Conformational Restriction Approach to β-Secretase (BACE1) Inhibitors: Effect of a Cyclopropane Ring To Induce an Alternative Binding Mode

Shuji Yonezawa, ${ }^{*}, \dagger, \perp$ Takahiko Yamamoto, ${ }^{\ddagger}$ Hidekuni Yamakawa, ${ }^{\ddagger}$ Chie Muto, ${ }^{\ddagger}$ Motoko Hosono, ${ }^{\ddagger}$ Kazunari Hattori, ${ }^{\ddagger}$ Kenichi Higashino, ${ }^{\dagger}$ Takashi Yutsudo, ${ }^{\ddagger}$ Hideo Iwamoto, ${ }^{\S}$ Yutaka Kondo, ${ }^{\S}$ Masahiro Sakagami, ${ }^{\dagger}$ Hiroko Togame, ${ }^{, 1}$ Yoshikazu Tanaka, ${ }^{\dagger}$ Toru Nakano, ${ }^{\dagger}$ Hiroshi Takemoto, ${ }^{\ddagger}$ Mitsuhiro Arisawa, ${ }^{\perp}$ and Satoshi Shuto*, ${ }^{\perp}$
${ }^{\dagger}$ Shionogi Innovation Center for Drug Discovery, Shionogi \& Co., Ltd., Kita-21 Nishi-11 Kita-ku, Sapporo 001-0021, Japan
${ }^{\dagger}$ Pharmaceutical Research Division, Medicinal Research Laboratories, and Innovative Drug Discovery Research Laboratories, Shionogi \& Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
${ }^{\text {s }}$ Shionogi Techno Advance Research Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
"Quality, Safety and Regulatory Affairs Management Division, Shionogi \& Co., Ltd., 1-8, Doshomachi 3-chome, Chuo-ku, Osaka 541-0045, Japan
${ }^{\perp}$ Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan

(S) Supporting Information

Abstract

Improvement of a drug's binding activity using the conformational restriction approach with sp^{3} hybridized carbon is becoming a key strategy in drug discovery. We applied this approach to BACE1 inhibitors and designed four stereoisomeric cyclopropane compounds in which the ethylene linker of a known amidine-type inhibitor 2 was replaced with chiral cyclopropane rings. The synthesis and biologic evaluation of these compounds revealed that the cis- $(1 S, 2 R)$ isomer 6 exhibited the most potent BACE1 inhibitory activity among them. X-ray structure analysis of the complex of 6 and BACE1 revealed that its unique binding mode is due to the apparent $\mathrm{CH}-\pi$ interaction between the rigid cyclopropane ring and the Tyr71 side chain. A derivatization study using $\mathbf{6}$ as a lead molecule led to the development of highly potent inhibitors in which the structure-activity relationship as well as the binding mode of the compounds clearly differ from those of known amidine-type inhibitors.

INTRODUCTION

Alzheimer's disease (AD) is a progressive neurologic disorder of the brain, now considered to be the main form of dementia. AD causes a gradual and progressive loss of memory and cognitive ability, impaired orientation to surroundings, and impaired language ability, and it eventually leads to death. In the amyloid cascade hypothesis, overproduction of amyloidbeta $(\mathrm{A} \beta)$ is considered to trigger the onset of $\mathrm{AD} .{ }^{1} \mathrm{~A} \beta$ gradually accumulates in the brain, forming soluble oligomers and senile plaques. Neurofibrillary tangles caused by hyperphosphorylation of the τ protein are also observed and lead to neuronal death. Two key proteases, γ-secretase and β-secretase (BACE1), are considered to have an important role in $\mathrm{A} \beta$ production. BACE1 first cleaves amyloid precursor protein (APP) to generate soluble amyloid precursor protein β $(\operatorname{sAPP} \beta)$ and C 99 peptide, which remains bound to a membrane. ${ }^{2}$ The γ-secretase cuts the C 99 peptide to produce mature $\mathrm{A} \beta$ peptides of various lengths, including $\mathrm{A} \beta_{42}$, which is thought to be the most pathogenic among the $\mathrm{A} \beta$ s produced. Inhibition of BACE1 activity decreases the production of all forms of $A \beta$, and knockdown of BACE1 expression in mice stops the production of $\mathrm{A} \beta_{40}$ and $\mathrm{A} \beta_{42}$ in vivo, without any
signs of significant dysfunction. ${ }^{3}$ Therefore, BACE1 inhibitors are considered to be an attractive target for a causative treatment of $\mathrm{AD} .^{4}$ Many pharmaceutical companies are now competing to develop these inhibitors, and clinical trials with some compounds have recently begun. ${ }^{5}$

The cyclic amidine unit is the main common component of many targeted BACE1 inhibitors. The first report of a cyclic amidine-type inhibitor using a fragment-based drug design technique was made by AstraZeneca/Astex reseachers in 2007 (Figure 1). ${ }^{6}$ They used nuclear magnetic resonance screening to identify the first small fragment hit 1 containing an aminopyrimidone ring system. They then studied the structure/activity relationship (SAR) of the hit 1 using a fragment-growing approach based on the X-ray structure of the complex with BACE1, and they developed an effective inhibitor with submicromolar order inhibitory activity by extending the hydrophobic aryl substituent with an ethylene linker. They also reported the X-ray structures of some other amidine-based inhibitors complexed with BACE1, in which a common binding

[^0]

1
$I_{50}: 2490 \mu \mathrm{M}$

2
$I_{50}: 220 \mu \mathrm{MLE}=0.29$

3
$I C_{50}: 130 \mu \mathrm{M}$ LE $=0.28$

$4(\mathrm{R}=\mathrm{H}) \mathrm{IC}_{50}: 29 \mu \mathrm{M}$ LE $=0.27$
$5(\mathrm{R}=\mathrm{OMe}) \mathrm{IC}_{50}: 5.9 \mu \mathrm{M} \mathrm{LE}=0.29$
Ethylene linker compounds by AstraZeneca group ${ }^{6 \mathrm{~b}}$

6 [cis-(1S, 2R)]

ent- $6[$ cis-(1R, 2S)]

7 [trans-(1R, 2R)]

ent-7 [trans-(1S, 2S)]

Figure 1. Basic concept of the compound design.
mode was disclosed. ${ }^{6,7 f, g}$ Two nitrogen atoms in the cyclic amidine ring make tight hydrogen bonds with the side chains of catalytic residues Asp32 and Asp228. The hydrophobic aryl part of the inhibitors is accommodated in the S1 and S3 pocket of the active sites, allowing for an effective hydrophobic interaction with BACE1. This binding mode is analogous in complexes of other amidine-type inhibitors. ${ }^{7}$

To convert the fragments into more effective lead compounds, saturated alkyl chains or sp^{2} hybridized carbonincluding linkers, such as carbon-carbon double bonds or amide bonds, are commonly utilized for fragment-growing. ${ }^{8}$ Saturated alkyl chains are probably the most commonly utilized linkers because of their structural simplicity and facile synthesis, but their high degree of free rotation may impede their binding affinity. sp^{2} linkers are also widely used for their availability as building blocks due to the recent development of coupling reactions. They are also advantageous as a facile method for introducing conformational fixation to molecules, due to their low degree of free rotation. On the other hand, the incorporation of sp^{2} carbon-based components sometimes causes undesirable physical properties, e.g., low solubility, probably due to intermolecular static interactions caused by the planar sp^{2} carbon. ${ }^{9}$ Further, identification of a structurally new drug candidate is often difficult because of the shortage of sp^{2}-carbon based chemical entities in a novel structure and its limited three-dimensional structural diversity. On the other hand, the use of rigid structures based on sp^{3} carbons is now becoming a key topic in drug design in terms of improved selectivity. ${ }^{10}$ This approach may enable the development of novel, structurally diverse compounds and potential binders with improved activity by compensating for the entropic loss generated by binding to the target compound. ${ }^{11}$

Cyclopropane is widely used in drug design and is incorporated in many drugs that are currently on the market. It is the smallest, rigid sp^{3}-carbon based ring system and has potential application in a conformational restriction approach, but the number of successful applications to date is small, probably due to the limited number of examples of its stereoselective and industrially feasible synthetic methods. ${ }^{12}$ Our laboratory has been studying the synthesis of optically active cyclopropanes from commercially available chiral epichlorohydrin and their utilization in drug design. We successfully produced novel, selective NMDA antagonists, ${ }^{13}$
histamine H_{3} agonists, ${ }^{14 \mathrm{a}, \mathrm{b}}$ and histamine $\mathrm{H}_{3} / \mathrm{H}_{4}$ antagonists, ${ }^{14 c, \mathrm{~d}}$ whose conformation is effectively controlled by the characteristic stereochemical features of cyclopropane. Its low molecular weight and rigid framework may also be suitable for fragment-based drug design, especially in a fragment growing approach, as well as a component in a fragment compound library.

Therefore, here we investigated the feasibility of replacing the ethylene part of a known BACE1 inhibitor 2 with a cyclopropane ring, and we designed the conformationally restricted analogs 6 and 7 and their enantiomers ent- 6 and ent7 to improve their BACE1 inhibitory activity by placing the substituents at a position suitable for effective binding and by reducing the active entropic energy loss upon binding BACE1 due to the conformational restriction (Figure 1). Using the most active compound 6 among them as a lead, we obtained SAR results that were clearly different from those of the unrestricted inhibitors to identify potent BACE1 inhibitors based on the characteristic binding mode of the compounds due to the conformational restriction. In this report, we describe the results in detail.

RESULTS AND DISCUSSION

Docking Simulations of the Conformationally Restricted Analogs. First, the conformations of these four stereoisomers with the lowest energy were calculated in the MMFF94x force field ${ }^{15}$ using the Molecular Operating Environment (MOE). ${ }^{16}$ The structures obtained by the calculations were superimposed on the X-ray crystallographic structure of the ethylene linker compound 3 complexed with human BACE1 (PDB code no. 2VA5), as shown in Figure 2. In the BACE1 complex, compound 3 adopts a folded conformation that is not likely to be the most stable in its unbound state. While the two cis isomers 6 and ent- 6 assume conformations similar to that of compound 3, the benzene rings of the trans isomers 7 and ent-7 located at positions clearly different from that of the indole ring in 3 . On the basis of this observation, the inhibitory activities of the trans isomers were predicted to be weaker than those of the cis isomers. Comparison of the two cis isomers suggested that ent- 6 was superimposed on compound 3 more precisely than 6 .

Figure 2. Superimpositions of the X-ray structure of compound 3 are in gray (PDB 2VA5) and the predicted conformations of each stereoisomer are in magenta: (a) 6 [cis- $(1 S, 2 R)]$; (b) ent-6 [cis$(1 R, 2 S)]$; (c) 7 [trans- $(1 R, 2 R)]$; and (d) ent-7 [trans-($1 S, 2 S$)].

We planned to synthesize compounds 6, ent-6, 7, and ent-7, to examine their BACE1 inhibitory activities to confirm the above predictions and to identify the most active stereoisomer.

Synthesis of Compounds. First generation synthesis of the cis-cyclopropane derivative 6 was performed based on our previous report of the stereoselective synthesis of phenylcyclopropane carboxylic acid 14 (Scheme 1). ${ }^{17}$ Lactone 9 a was obtained by the condensation of optically pure (S)-(+)-epichlorohydrin 8 and phenylacetonitrile under basic conditions. Subsequent alkaline hydrolysis of the lactone followed by silylation gave the disilylated product on both the carboxyl and hydroxyl moieties, and then the silyl ester, which was selectively hydrolyzed under aqueous basic conditions to yield the carboxylic acid 10. 10 was subjected to Barton decarboxylation, giving the cis-product selectively, which, without purification,
was deprotected with TBAF to isolate the cis alcohol 12. After oxidation of 12 into the carboxylic acid 14 , the β-ketoester 15 was successfully obtained from 14 using the Masamune conditions. ${ }^{18}$ The minor trans isomer was completely removed by SiO_{2} column chromatography at this stage. According to the aminopyrimidone synthesis method reported previously, ${ }^{6 \mathrm{~b}, \mathrm{c}} 15$ was treated with guanidine carbonate in the presence of MeONa . Epimerization at the 1-position of cyclopropane occurred concomitantly during cyclization to give a mixture of diastereomers 16 in a ratio of cis/trans $=1.3: 1$. Highly basic guanidine may have caused the isomerization via the enolization of the keto-cyclopropyl moiety in 15 . Selective methylation of 16 with MeI occurred at the lactam nitrogen, and finally the desired 6 was obtained after the reversed phase preparative HPLC purification, although the yield was poor. Its enantiomer, ent-6, was synthesized using the same reaction sequence starting from $(R)-(-)$-epichlorohydrin.

The trans- $(1 R, 2 R)$ isomer 7 and its enantiomer trans-($1 S, 2 S$) ent-7 were prepared according to a procedure similar to those for the cis-isomers 6 and ent-6, from the known chiral phenylcyclopropane carboxylic acid 17 and ent-17 (Scheme 2). ${ }^{19}$ Neither epimerization nor a decrease in enantiomeric

Scheme 2. Synthesis of 7^{a}

${ }^{a}$ Reagents and conditions: (a) (i) 1.5 equiv of CDI, $\mathrm{MeCN}, \mathrm{rt}, 1 \mathrm{~h}$, (ii) 2.1 equiv of potassium ethyl malonate, 2.5 equiv of $\mathrm{MgCl}_{2}, 3.2$ eq $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}$, r.t., then $80^{\circ} \mathrm{C}, 2 \mathrm{~h}, 82 \%$; (b) 2 equiv of guanidine carbonate, 2 equiv of $\mathrm{EtONa}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}, 5 \mathrm{~h}, 57 \%$; (c) 1.1 equiv of MeI, 1.1 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, $18 \mathrm{~h}, 67 \%$.

Scheme 1. First-Generation Synthesis of 6^{a}

${ }^{a}$ Reagents and conditions: (a) (i) 1.1 equiv of $\mathrm{PhCH}_{2} \mathrm{CN}, 2.5$ equiv of NaNH_{2}, benzene, rt, 1 h , (ii) 10 M KOH aq, EtOH 20 h , reflux, 56%; (b) (i) 10 M KOH aq, $\mathrm{EtOH}, \mathrm{rt}, 1 \mathrm{~h}$, (ii) 4.5 equiv of TBDPS-Cl, 5 equiv of imidazole, DMF, rt, overnight, (iii) $10 \mathrm{M} \mathrm{KOH} \mathrm{aq}, \mathrm{EtOH} 1 \mathrm{~h}, \mathrm{rt},, 48 \%$; (c) (i) 1.2 equiv of $11,1.5$ equiv of $n-\mathrm{Bu}_{3} \mathrm{P}, 3$ equiv of $(\mathrm{TMS})_{3} \mathrm{SiH}, 0.2$ equiv of AIBN, benzene, $\mathrm{rt}, 1 \mathrm{~h}$, then $80^{\circ} \mathrm{C}, 6.5 \mathrm{~h}$, (ii) 1.5 equiv of TBAF, THF, 45%, cis/trans $=10.7: 1$; (d) 0.1 equiv of TPAP, 3 equiv of $\mathrm{NMO}, \mathrm{MS} 4 \mathrm{~A}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}, 75 \%$, cis/trans $=10.6: 1$; (e) 1.5 equiv of $\mathrm{NaClO} 2,1.5$ equiv of $\mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{H}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 90 \%$, cis/trans $=7.6: 1$; (f) (i) 1.5 equiv of $\mathrm{CDI}, \mathrm{MeCN}, \mathrm{rt}, 1 \mathrm{~h}$, (ii) 2.1 equiv of potassium ethyl malonate, 2.5 equiv of $\mathrm{MgCl}_{2}, 3.2$ equiv of $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}$, rt , then $80^{\circ} \mathrm{C}, 2 \mathrm{~h}, 77 \%$; (g) 2 equiv of guanidine carbonate, 2 equiv of $\mathrm{EtONa}, \mathrm{EtOH}, 80{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 80 \%$, cis/trans $=1.3: 1$; (h) 1.3 equiv of MeI, 1.3 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, $22 \mathrm{~h}, 47 \%$; (i) preparative HPLC separation, $623 \%, 756 \%$.

Scheme 3. Improved Synthesis of cis-Cyclopropane Derivatives ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) (i) $\mathrm{ArCH}_{2} \mathrm{CN}, \mathrm{NaNH}_{2}$, benzene or toluene, rt, (ii) 10 M KOH aq, EtOH, reflux, 58% ($\mathbf{9 a}$), 61% ($\mathbf{9 b}$), 63% (ent- $\mathbf{9 b}$), $62 \%(9 c) ;(b)(i) 10 \mathrm{M} \mathrm{KOH}$ aq, $\mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}$, rt, (ii) 1 equiv of $\mathrm{MeONa}, \mathrm{Et}_{2} \mathrm{O}, 80 \%$ (20a), 87% (20b), 94% (ent-20b), 95% (20c); (c) cat. RuCl_{3}, $\mathrm{NaIO}_{4}, \mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 75 \%$ (21a), 87% (21b), 80% (ent-21b), 69% (21c); (d) (i) CDI, (ii) potassium ethyl malonate, $\mathrm{MgCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}^{2}$, rt, then $80^{\circ} \mathrm{C}$; (e) (i) EtONa, (ii) guanidine carbonate, $\mathrm{EtOH}, 90^{\circ} \mathrm{C}, 14 \mathrm{~h}$; (f) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, \mathrm{rt}, 32 \%$ (24a), 34\% (24b), 29\% (ent-24b), 33\% (24c) for 3 steps; (g) $\mathrm{Boc}_{2} \mathrm{O}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $85 \%(25 a), 89 \%(25 b), 82 \%\left(\right.$ ent-25b), $92 \%(25 c)$; (h) 10 M KOH aq, $\mathrm{EtOH}, \mathrm{H} 2 \mathrm{O}, 60{ }^{\circ} \mathrm{C}$; (i) (i) N, O-bistrimethylsilylacetamide, (ii) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $78 \%(\mathbf{2 7 a}$), 80% (27b), 78% (ent-27b), 72% (27c) for 2 steps.
purity was observed during the synthesis of these trans isomers, indicating that intermediate ketoester 18 and ent-18 were likely to be thermodynamically far more stable than the cis-oriented ketoester $\mathbf{1 5}$ under basic conditions.

As described below, the cis- $(1 S, 2 R)$ isomer 6 was the most potent BACE1 inhibitor among the four conformationally restricted stereoisomers. The first generation synthetic route shown in Scheme 1 involved an undesired epimerization at the 1 -position in the cyclopropane ring to the trans-isomer at the cyclization step, which was a big problem for scale-up synthesis and efficient exploration of the SAR, so we developed an alternative stereoelective synthetic route for the cis-cyclopropane derivatives (Scheme 3).

We planned to prepare various derivatives of the cis-($1 S, 2 R$) isomer 6 that have a substituent at the 3 - or 4 -position of the benzene ring using the Suzuki-Miyaura coupling reaction, and therefore, 3- or 4-bromo substituted derivatives of 6 were also required. Thus, the 3 - or 4 -bromo substituted lactones $9 \mathbf{b}$, ent$\mathbf{9 b}$, and $9 \mathbf{c}$ were prepared according to the procedure for the synthesis of 9a described above, the enantiomeric excesses of which were confirmed to be around 95%. Compounds 9 were then hydrolyzed under aqueous basic conditions to convert them to a stable and fine crystalline carboxylic acid salt $\mathbf{2 0}$, subsequent ruthenium tetroxide oxidation of which gave the bis-carboxylic acids 21 in good yields. Next, we introduced the β-ketoester moiety into 21. β-Ketoesterification using Masamune conditions ${ }^{18}$ proceeded selectively at the sterically less hindered carboxy group to yield the desired 22 as a sole
product. Treatment of 22 with sodium ethoxide and subsequent heating with guanidine carbonate produced 23; then methylation of 23 with MeI proceeded selectively at the carboxyl group and the lactam nitrogen in the aminopyrimidone ring to give 24 with $\sim 30 \%$ yield from 21. After protection of the amino moiety of 24 with two Boc groups, alkaline hydrolyses of the resulting methyl ester $\mathbf{2 5}$ were carried out, where one of the two Boc groups was simultaneously removed to furnish 26. In situ silylation of the carboxy group with N, O-bistrimethylsilylacetamide (BSA), and then a trial of Boc protection yielded 27, the substrate for stereoselective Barton decarboxylation (Scheme 4). ${ }^{17,20}$

Optimization studies for the radical decarboxylative isomerization reaction were performed using ent-27b as a substrate (Table 1). First, according to the best conditions determined in our previous report, ${ }^{17}$ ent-27b was heated with $\mathbf{1 1}$ (1.2 equiv), $\mathrm{Bu}_{3} \mathrm{P}$ (3 equiv), and $\mathrm{TMS}_{3} \mathrm{SiH}$ (3 equiv) in the presence of AIBN as a radical initiator to give ent-28b in 32% yield, whereas none of the trans isomer was produced. The thio-pyridine containing compound 29 was also isolated in 42% yield as a byproduct (entry 1). ${ }^{21}$ We deduced that the side-reaction might proceed due to the low reactivity of $(\mathrm{TMS})_{3} \mathrm{SiH}$. When 6 equiv of (TMS) $)_{3} \mathrm{SiH}$ was used to promote trapping of the radical intermediate by the reagent, the yield of ent-28b was slightly improved, but there was still significant production of 29 (entry 2 in Table 1). Thus, using a more reactive reductant, $\mathrm{Bu}_{3} \mathrm{SnH}$, the desired product ent-28b was successfully obtained in 57% yield (entry 3) without producing the trans isomer under the

Scheme 4. Barton Decarboxylation and Cross Coupling Reactions ${ }^{a}$

same conditions. Although another radical initiator, $2,2^{\prime}$ azobisvaleronitrile, which initiates radical chain reactions at a lower temperature, was also tested, the reaction did not proceed (entry 4).

Using the conditions described for entry 3, Barton decarboxylation of other substrates was performed, and the desired cis-substituted cyclopropane compounds 28a-c were obtained in 38-53\% yield. Deprotection of 28a gave the cis$(1 S, 2 R)$ isomer 6 , whose enantiomeric excess was determined to be 94.8% by chiral column analysis (see Experimental Section). Compounds $\mathbf{2 8 b}$ and ent-28b were also deprotected to give 31 and ent-31, respectively. Using 28b, ent-28b, and 29c as substrates for the Suzuki-Miyaura couplings, we obtained a variety of target compounds.

BACE1 Inhibitory Activities of Conformationally Restricted Analogs. The BACE1 inhibitory activities of the four isomers 6, ent-6, 7, and ent-7 against human BACE1 are shown in Table 2. Among the four cyclopropane-based conformationally restricted analogs, the cis- $(1 S, 2 R)$ isomer 6

Table 2. BACE1 Inhibitory Activity of 2 and Its Conformationally Restricted Analogs

compd	BACE1 IC $(\mu \mathrm{M})^{b}$	ligand efficiency (LE) (kcal/mol per heavy
atom)		

exhibited significant inhibitory activity $\left[\mathrm{IC}_{50}=157 \mu \mathrm{M}\right.$, ligand efficiency (LE) $=0.29$], while the activity of its enantiomer ent6 was approximately four times weaker $\left(\mathrm{IC}_{50}=619 \mu \mathrm{M}, \mathrm{LE}=\right.$ $0.24)$. The two trans isomers did not show any inhibitory activity ($>2000 \mu \mathrm{M}$). Although the IC_{50} value and LE of $\mathbf{6}$ were not definitely improved, it was equally active with the nonrestricted ethylene linker compound 2 ($\mathrm{IC}_{50}=171 \mu \mathrm{M}$, $\mathrm{LE}=0.30$). Thus, the stereochemistry of the cyclopropane ring was closely related to the inhibitory activity of BACE1, and the cis- $(1 S, 2 R)$ isomer 6 was the most suitable for further design of compounds with improved activity.

X-ray Crystallographic Structure Analysis of 6 Complexed with BACE1. To clarify the bioactive conformation of 6 and to gain more detailed insight into the structure modification of 6, we prepared the crystalline complex of human BACE1 and 6 and analyzed its X-ray crystallographic structure (Figure 3). As expected from the structures of other previously reported cyclic amidine-based inhibitors complexed with BACE1, the two nitrogen atoms of the amidine moiety formed hydrogen-bond contacts with the side chain of Asp32 and Asp228 of BACE1. The benzene ring of 6 was accommodated in the S1 pocket with favorable hydrophobic interactions. Superimposition of this structure on the previously reported structure of the ethylene linker compound 3-BACE1 complex (PDB code no. 2VA5) ${ }^{6 \mathrm{~b}}$ (Figure 3) revealed some interesting differences. In the structure of 6 , the side chain of Tyr71 in the BACE1 enzyme flipped, which made space for the compound to be incorporated. ${ }^{22}$ Furthermore, to our surprise, 6 was located at a position remarkably closer to the flap region of BACE1 compared with that of the ethylene linker compound 3, making it possible for the cyclopropane ring to interact with

Table 1. Optimization of Barton Decarboxylation of ent-27b

entry	reductant (eq)	initiator	$\text { temp }\left({ }^{\circ} \mathrm{C}\right)$	yields (\%)	
				ent-28b	29
1	$\mathrm{TMS}_{3} \mathrm{SiH}$ (3)	AIBN	80	32	42
2	$\mathrm{TMS}_{3} \mathrm{SiH}$ (6)	AIBN	80	38	35
3	$\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}$ (3)	AIBN	80	57	10
4	$\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}$ (3)	AVN^{a}	65	N.D. ${ }^{\text {b }}$	N.D. ${ }^{\text {b }}$

[^1]

Figure 3. X-ray crystallographic structure of the BACE1 (in cyan) complexed with 6 (in green), superimposed with ligand 3 in PDB 2VA5 (3 in gray and Tyr71 side chain in white). Key interactions between 6 and the side chains of Asp32 and Asp228 are depicted as yellow dashed lines.
the side chain moiety of Tyr71. The distance of the aromatic ring in Tyr71 and a carbon or hydrogen in the cyclopropane ring was around $3.4 \AA$ or $2.7 \AA$, respectively (Figure 4),

Figure 4. Distances between the π plane of Tyr71 and the cyclopropane carbon atom or hydrogen atom of compound 6 in the complex.
suggesting a $\mathrm{CH}-\pi$ interaction between those moieties. ${ }^{23} \mathrm{~A}$ tight conformational restriction by the cyclopropane ring might have caused the unexpected induced-fit on the binding of 6 with BACE1, in which the effective $\mathrm{CH}-\pi$ interaction of the cyclopropane ring and the Tyr71 side chain was likely to stabilize the complex structure. The cyclopropane ring is more polarizable than the ethylene, which might result in effective dispersion interactions, leading to this interesting $\mathrm{CH}-\pi$ interaction mode. ${ }^{24}$ Moreover, the sp^{2}-like hybrid orbital nature of cyclopropane might also make favorable contact with the Tyr71 side chain through electrostatic interactions. ${ }^{25}$

Thus, an alternative inhibitor-binding mode of BACE1 induced by the rigid cyclopropane ring was identified. We expected that the SAR, different from those reported for the derivatives of ethylene linker compounds 2, might be determined in derivatization studies of 6 as a lead.

Compound Design Based on the Structure of 6 Complexed with BACE1. To explore more active compounds against BACE1, we performed docking studies using the $\mathbf{6}$ and BACE1 complex (Figure 3). Many potent BACE1 inhibitors reported to date bear a cyclic amidine moiety as the key
component that interacts with the two catalytic Asp side chains, and they also contain a biaryl-based structure, which fits hydrophobic S1 and S3 pockets. In these biaryl cyclic amidine BACE1 inhibitors, ${ }^{4}$ substituting the amidine moiety at the meta position on the aromatic ring usually leads to improved inhibitory activity by efficiently occupying the bent-shaped active site of BACE1.

We designed several compounds by taking these reported results and the structure of 6 complexed with BACE1 into account. First, we intended to introduce another benzene ring at the meta position of the benzene ring on 6 . A docking study was performed using the X-ray data of Figure 3; energy minimization of a newly designed ligand 32 , which bears a benzene ring at the meta position, was performed with MOE and then merged with the protein structure shown in Figure 3. An unfavorable steric crash between the binding site of BACE1 and the terminal benzene ring, however, was clearly observed (Figure 5), probably due to the position of this compound in

Figure 5. Docking study result for compound 32, in which a phenyl substituent was introduced at the meta position of compound 6.
the active site being more proximal to the flap region compared with that of the ethylene linker compound 3 . Thus, it was anticipated that the introduction of an additional aromatic ring into the meta position of the benzene ring in 6 might lead to weaker activity. We observed a new space around the para position of the benzene ring in 6, however, which was not present in the complex structures of the known biaryl cyclic amidine BACE1 inhibitors (Figure 6). Therefore, we expected that introducing another substituent into this position might make it possible to develop a new type of potent inhibitor, and

Figure 6. Possible substitutions at the para position of 6.

Table 3. BACE1 Inhibitory Activity of the meta-Substituted Derivatives

${ }^{a} \mathrm{IC}_{50}$ in ELISA. Values are means of at least two experiments. ${ }^{b}$ Ligand efficiency. ${ }^{c}$ Compound 30 was prepared according to the reported procedures. ${ }^{6 \mathrm{~b}, \mathbf{c}}$
we planned to synthesize the following two types of new compounds and examine their BACE1 inhibitory activity to verify our hypotheses: (a) meta-substituted biaryl derivatives to examine whether the SAR of our compounds differed from those of the previous biaryl cyclic amidine BACE1 inhibitors, and (b) para-substituted biaryl derivatives to improve the activity.

Structure-Activity Relationship of the meta-Substituted Biaryl Derivatives. We synthesized several meta-aryl substituted cis- $(1 S, 2 R)$ cyclopropane derivatives $31-33$ and the corresponding ethylene linker compounds $\mathbf{3 0}, 4$, and 5 , and we compared their BACE1 inhibitory activity. We also prepared their enantiomers, ent-31-33, to reaffirm the suitable stereoconfiguration of the cyclopropane ring. The structures and activities of these compounds are shown in Table 3. When a bromo or a phenyl group was introduced into the meta-position of these three series of compounds, the IC_{50} values against BACE1 significantly decreased over $500 \mu \mathrm{M}$ in the cis-(1S,2R)type compounds $(31,32)$ and over 1 mM in the cis-($1 R, 2 S$)type compounds (ent-31, 32), while the corresponding ethylene linker-type compounds had remarkable inhibitory activity (30, 4; $\left.\mathrm{IC}_{50}=19.8-6.5 \mu \mathrm{M}\right)$. The declining activity of the cyclopropane derivatives was just as predicted from the docking study shown in Figure 5. To our surprise, however, substitution of the m-methoxyphenyl group on the cis- $(1 S, 2 R)$ cyclopropane compound dramatically improved the activity, with an IC_{50} value $(33 ; 4.6 \mu \mathrm{M})$ comparable to that of the ethylene linker compound $5(4.2 \mu \mathrm{M})$. The identical modification on the cis- $(1 R, 2 S)$ cyclopropane compound was also effective, but its IC_{50} value (ent-33; $103 \mu \mathrm{M}$) was still ~ 20 times weaker than those of 33 and 5 . As a result, compound 6 with the cis- $(1 S, 2 R)$-cyclopropane structure was the most effective lead compared with its enantiomer ent-6 having a $(1 R, 2 S)$ cyclopropane structure, in these meta-substituted biaryl derivatives.

X-ray Structure of 33 Complexed with BACE1. We then performed the X-ray structure analysis of the compound 33 and BACE1 complex to elucidate why only 33 among the metasubstituted cyclopropane derivatives exhibited strong inhibitory activity against BACE1. The aminopyrimidine moiety of 33 occupied a position almost identical to that of 6 , and its nitrogens interacted with the aspartic acid catalytic centers in the same manner (Figure 7a). The central benzene ring was

Figure 7. (a) X-ray crystallographic structure of 33 (in yellow) complexed with BACE1 (in beige), superimposed with BACE1 (in cyan) complexed with 6 (in green). The hydrogen binding network of the methoxy group of 33 , a water molecule, and the main chain of Ser229 is drawn in green dashed lines. (b) Seen from the bottom side of part a. Some residues were omitted for clarity.
placed in the S1 pocket, creating an effective hydrophobic interaction with the enzyme pocket. As predicted from the SAR study summarized in Table 3, the methoxy group on the terminal benzene ring played a key role in the interaction with BACE1. The methoxy oxygen formed a hydrogen bond with the water molecule, placed in the deeper position within the S3 pocket, which makes a hydrogen bond with the main chain of Ser229. ${ }^{26}$ Interestingly, the side chain of Leu30 of the S1
pocket eventually rotated toward the indole ring of Trp115 to make a space accommodating the terminal aromatic ring (Figure 7b). Such an induced fit initiated by the interaction between the amidine-based BACE1 inhibitor and the Leu30 side chain is the first example, to our knowledge, among the many X-ray structures of the BACE1 and its inhibitor complex reported so far. ${ }^{27}$ The hydrogen bond network mediated by the water molecule placed in the S3 pocket should be indispensable for the remarkable inhibitory activity of 33 . The unexpected binding mode of 33 to BACE1 would originate from the induced fit due to the rigid cyclopropane ring with the cis$(1 S, 2 R)$ stereochemistry.

SAR of the para-Substituted Biaryl Derivatives. We examined the BACE1 inhibitory activities of the parasubstituted biaryl derivatives $34-37$ with the ($1 S, 2 R$)-cyclopropane structure and the corresponding ethylene linker-type compound 38 (Table 4). As expected from the X-ray structural

Table 4. Primary SAR of the para-Substituted Biaryl Derivatives
Cpds.
${ }^{a} \mathrm{IC}_{50}$ in homogeneous time-resolved fluorescence (HTRF) assay. Values are means of at least two experiments. ${ }^{b}$ Ligand efficiency.
analysis of the parent compound 6, substitution of a benzene ring in the para position of $\mathbf{6}$ successfully improved the activity; compound 34 had an IC_{50} value of $25.6 \mu \mathrm{M}$, which is about 5fold more active than 6, although the LE decreased slightly to 0.26 . The corresponding ethylene linker compound 38 was completely inactive. These results suggest that the novel structural modification could be spread out by restricting the conformation of the ethylene chain using the ($1 S, 2 R$)cyclopropane structure.

Compounds 35-37 methylated at the ortho-, meta-, or paraposition on the terminal benzene ring of 34 were examined to investigate the feasibility of additional structural modification. Among those compounds, the meta-methylated 36 had improved activity with an IC_{50} of $17.1 \mu \mathrm{M}$, of which the LE (0.26) was equal to that of compound 34 . Thus, substitution at the meta position of the terminal benzene ring improved the inhibitory activity of these derivatives.

The X-ray structure of compound 36 complexed with BACE1 was then analyzed to obtain information for further structural modification (Figure 8). The biaryl moiety was in an

Figure 8. X-ray crystallographic structure of 36 (in orange) complexed with BACE1.
almost planar conformation, and the terminal methyl group was directed toward the unoccupied S3 pocket. On the basis of this observation, we further examined the SAR using two strategies: (a) replacing the terminal benzene ring of 36 with a smaller heteroaromatic ring or a pyridine ring to more precisely fit the compound to the active site of BACE1 and to reduce the steric repulsion between the two benzene rings in 36 in the planar conformation; and (b) replacing the substituent at the meta position of the terminal benzene ring to effectively occupy the vacant space of the S3 pocket.

The SAR results based on strategy a are summarized in Table 5. Replacing the benzene ring with a sterically less-demanding 2-thienyl group (compound 39) improved the activity (14.1 $\mu \mathrm{M}$) and LE (0.29), but replacing the benzene ring with a 3thienyl group or a 2 -furanyl group was not effective. Further, introduction of a methyl group onto the thiophene ring of 39, i.e., compounds 42 and 43 , was not effective, probably due to the different orientation of the methyl group from that in compound 36. Replacement with a substituted pyridine ring was also carried out (compounds 44, 45), but this resulted in largely decreased activity. On the other hand, replacement with a pyrazine ring was fairly effective (compound 46), with an IC_{50} value of $12.6 \mu \mathrm{M}$, but the LE was not significantly improved.

Replacing the terminal substituent based on strategy b was also investigated (Table 6). Various alkoxy chains were introduced in which the ethoxy-substituted compound 48 had excellent activity ($\mathrm{IC}_{50}=10.2 \mu \mathrm{M}$). Introduction of shorter (47), longer (49), or branched (50,51) alkoxy chains led to dropped activity. Simple linear alkyl chains or alkylsulfanyl chains were fairly effective (52-55), with IC_{50} values of $10-20$ $\mu \mathrm{M}$. Ethylsulfanyl-substituted compound $\mathbf{5 5}$ exhibited the best activity among the para-substituted compounds synthesized $\left(\mathrm{IC}_{50}=9.1 \mu \mathrm{M}\right)$. The corresponding ethylene linker-type congener 61, having the same ethylsulfanyl substituent as 55, had no inhibitory activity against BACE1. Replacement with other substituents, such as $\mathrm{MeOCH}_{2}, \mathrm{NCCH}_{2}, \mathrm{HOCH}_{2} \mathrm{CH}_{2}$, AcHN , or $\mathrm{H}_{2} \mathrm{NOC}$, was less effective (compounds 56-60). These data support the fact that the remaining space in the S3 pocket is a narrow "pipe"-like shape of approximately three single bonds in length with a hydrophobic nature.

Table 5. SAR of the para-Substituted Biaryl Derivatives: Introduction of Heteroaromatics
49
${ }^{a}: \mathrm{IC}_{50}$ in HTRF assay. Values are means of at least two experiments.
${ }^{b}$ Ligand efficiency.

CONCLUSION

We designed and synthesized cyclopropane-based conformationally restricted analogs of the amidine-type BACE1 inhibitor 2, and we identified the active cis- $(1 S, 2 R)$ isomer 6 . X-ray crystallographic structure analysis of $\mathbf{6}$ complexed with BACE1 revealed an unexpected binding mode that was clearly different from those of the known amidine-type inhibitors, which was induced by a $\mathrm{CH}-\pi$ interaction between the rigid cyclopropane ring and the Tyr71 side chain. On the basis of this unique binding mode, we performed a derivatization study using 6 as the lead compound to clarify the novel SAR, and we successfully developed potent BACE1 inhibitors. This study revealed a new feature of the conformational restriction approach: replacement of a flexible ethylene chain with a rigid cyclopropane ring triggered an induced fit of the target protein, leading to a unique space arrangement of the binding site and thus an alternative SAR, different from that for the conformationally unrestricted parent compound.

EXPERIMENTAL SECTION

General Experimental Methods for the Syntheses of Compounds. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR chemical shifts were reported in parts per million (ppm) relative to tetramethylsilane (0.00 ppm). Coupling constants (J) were reported in hertz. Silica-gel chromatog-

Table 6. SAR of the para-Substituted Biaryl Derivatives: Modification of the Terminal Substituent

${ }^{a}{ }^{a} \mathrm{IC}_{50}$ in HTRF assay. Values are means of at least two experiments. ${ }^{b}$ Ligand efficiency.
raphy was performed on a Yamazen Hi-Flash Column (Yamazen Corporation) using an automated flash chromatography system Wprep 2XY (Yamazen Corporation). Biotage Initiator was used for microwave irradiation reactions. The purity of the final products was $\geq 95 \%$ as determined by LCMS analysis. LC conditions are as follows: column, intakt Unison U-18 $4.6 \mathrm{~mm} \times 75 \mathrm{~mm}(3 \mu \mathrm{~m})$; temperature, $50{ }^{\circ} \mathrm{C}$; eluent, $\mathrm{A} \mathrm{H}_{2} \mathrm{O}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right)$, B $\mathrm{MeCN}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right)$; gradient condition, Eluent B $10 \%-95 \% 6 \mathrm{~min}, 95 \% 2 \mathrm{~min}$; flow rate, 2 $\mathrm{mL} / \mathrm{min}$. For detailed data of each compounds, see Supporting Information.

2-Amino-3-methyl-6-((1S,2R)-2-phenylcyclopropyl)pyrimidin$4(3 \mathrm{H})$-one (6). To a solution of 16 ($105 \mathrm{mg}, 0.460 \mathrm{mmol}$) in DMF $(3.1 \mathrm{~mL})$ was added potassium carbonate $(63.6 \mathrm{mg}, 0.460 \mathrm{mmol})$ and iodomethane ($28.7 \mu \mathrm{~L}, 0.460 \mathrm{mmol}$) under N_{2} atmosphere, and the mixture was stirred for 25 h at room temperature. Then iodomethane ($8.6 \mu \mathrm{~L}, 0.138 \mathrm{mmol}$) was added, and the mixture was stirred for another 15 h . Another portion of potassium carbonate ($63.6 \mathrm{mg}, 0.460$ mmol) and iodomethane ($28.7 \mu \mathrm{~L}, 0.460 \mathrm{mmol}$) were added, and the reaction mixture was stirred for 3 h and then partitioned between AcOEt and water. The organic layer was washed with water and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by silica gel chromatography (NH silica gel, $\mathrm{CHCl}_{3} / \mathrm{MeOH}=30: 1$) to obtain
the mixture of 6 and $7(52.6 \mathrm{mg}, 0.218 \mathrm{mmol}, 47 \%)$ as a colorless foam.

The mixture of 6 and $7(94.2 \mathrm{mg}, 0.390 \mathrm{mmol})$ was dissolved in $\mathrm{MeCN}(6 \mathrm{~mL})$ and water $(2 \mathrm{~mL})$, and separated by preparative reversed-phase HPLC (column: GL Science Inertsil-ODS-3, $10 \mathrm{~mm} \times$ 250 mm ; eluent: A 0.1% TFA in $\mathrm{H}_{2} \mathrm{O}, \mathrm{B} 0.1 \%$ TFA in MeCN ; gradient condition: B $10 \%-60 \% 40 \mathrm{~min}$; flow rate: $3 \mathrm{~mL} / \mathrm{min}$). All fractions were collected and concentrated to approximately half volume. After alkalinizing with 5% potassium carbonate in water, the product was extracted with AcOEt. The organic layer was washed with water and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified again via the same method to give $6(21.2 \mathrm{mg}, 0.0879 \mathrm{mmol}, 23 \%)$ and $7(52.7 \mathrm{mg}, 0.218 \mathrm{mmol}, 56 \%)$ as a colorless solid, respectively. 6: mp $148-150{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-34.1^{\circ}\left(c=0.511, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 1.34-1.41(1 \mathrm{H}, \mathrm{m}), 1.57-1.65(1 \mathrm{H}, \mathrm{m}), 2.15-2.23(1 \mathrm{H}$, m), 2.52-2.62 (1H, m), $4.79(2 \mathrm{H}, \mathrm{br}$ s), $5.64(1 \mathrm{H}, \mathrm{s}), 7.07-7.20(5 \mathrm{H}$, $\mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 10.67,25.14,25.92,27.45,101.83$, 126.05, 127.69, 129.30, 137.30, 153.68, 162.24, 164.29; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}: 242.1288\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 242.1288; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.66 ; \mathrm{H}, 6.34 ; \mathrm{N}, 17.16$. Found: C, 68.83; H, 6.38; N, 16.91. Optical purity: 96.9% ee (column: Daicel CHIRALPAK AY-H; eluent: MeCN (0.1% diethylamine), $1.0 \mathrm{~mL} /$ $\mathrm{min}, 40^{\circ} \mathrm{C}, 259 \mathrm{~nm}$; retention time: 4.2 min$)$.

2-Amino-3-methyl-6-((1R,2S)-2-phenylcyclopropyl)pyrimidin-4(3H)-one (ent-6). According to the procedure used to prepare 6, a mixture of ent-6 and ent-7 ($35.0 \mathrm{mg}, 0.145 \mathrm{mmol}, 42 \%$) was obtained as a colorless powder from ent-16 $(77.8 \mathrm{mg}, 0.342 \mathrm{mmol})$. Then a mixture of ent-6 and ent-7 $(69.1 \mathrm{mg}, 0.286 \mathrm{mmol})$ was purified to give ent-6 $(17.9 \mathrm{mg}, 0.0742 \mathrm{mmol}, 26 \%)$ and ent- $7(35.7 \mathrm{mg}, 0.148 \mathrm{mmol}$, 52%). ent-6: $[\alpha]_{\mathrm{D}}^{22}+32.7^{\circ}\left(c=0.513, \mathrm{CHCl}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}: 242.1288\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 242.1288. Optical purity: 93.0\% ee (column: Daicel CHIRALPAK AY-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, eluent: MeCN (0.1% diethylamine), $1.0 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, 259 \mathrm{~nm}$; retention time: 5.0 min).

2-Amino-3-methyl-6-((1R,2R)-2-phenylcyclopropyl)pyrimidin$4(3 \mathrm{H})$-one (7). To a solution of 19 ($80.9 \mathrm{mg}, 0.356 \mathrm{mmol}$) in DMF $(2.4 \mathrm{~mL})$ was added potassium carbonate $(49.2 \mathrm{mg}, 0.356 \mathrm{mmol})$ and iodomethane ($22.2 \mu \mathrm{~L}, 0.356 \mathrm{mmol}$) under N_{2} atmosphere, and the mixture was stirred for 18 h at room temperature. Then the reaction mixture was partitioned between AcOEt and water. The organic layer was washed with water and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by silica gel chromatography (NH silica gel, $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH}=30: 1\right)$ to obtain $7(57.8 \mathrm{mg}, 0.240 \mathrm{mmol}, 67 \%)$ as a colorless foam. mp $185-187^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}-399.2^{\circ}\left(c=0.512, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 1.29-1.35(1 \mathrm{H}, \mathrm{m}), 1.51-1.58$ $(1 \mathrm{H}, \mathrm{m}), 1.92-1.98(1 \mathrm{H}, \mathrm{m}), 2.32-2.39(1 \mathrm{H}, \mathrm{m}), 3.21(3 \mathrm{H}, \mathrm{s}), 5.65$ $(1 \mathrm{H}, \mathrm{s}), 7.05(2 \mathrm{H}, \mathrm{br} s), 7.11-7.19(3 \mathrm{H}, \mathrm{m}), 7.24-7.29(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 17.16,26.47,27.55,28.63,100.08,126.00$, 126.05, 128.45, 141.65, 154.87, 162.26, 166.70; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}: 242.1288\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 242.1285; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.66 ; \mathrm{H}, 6.34$; $\mathrm{N}, 17.16$. Found: C, 68.80; H, 6.45 ; N, 16.94. Optical purity: 95.3% ee (column: Daicel CHIRALPAK AY-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$; eluent: $\mathrm{MeCN}(0.1 \%$ diethylamine), $1.0 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, 259 \mathrm{~nm}$; retention time: 4.9 min).

2-Amino-3-methyl-6-((1S,2S)-2-phenylcyclopropyl)pyrimidin$4(3 \mathrm{H})$-one (ent-7). ent-7 ($78.8 \mathrm{mg}, 0.327 \mathrm{mmol}, 53 \%$) was obtained as a colorless foam from ent-19 ($141 \mathrm{mg}, 0.620 \mathrm{mmol}$) by the same procedure used to prepare 7. $[\alpha]_{\mathrm{D}}{ }^{22}+435.9^{\circ}\left(c=0.515, \mathrm{CHCl}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}: 242.1288\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 242.1288; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 69.17$; H, 6.30; N , 17.29. Found: C, 69.23 ; H, 6.15 ; N, 17.31. Optical purity: 98.4% ee (column: Daicel CHIRALPAK AY-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$; eluent: MeCN (0.1% diethylamine), $1.0 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, 259 \mathrm{~nm}$; retention time: 6.7 min$)$.
(1R,5S)-1-(3-Bromophenyl)-3-oxabicyclo[3.1.0]hexan-2-one (9b). Sodium amide ($10.5 \mathrm{~g}, 270 \mathrm{mmol}$) was suspended in benzene (60 mL), and m-bromophenylacetonitrile ($23.29 \mathrm{~g}, 119 \mathrm{mmol}$) in benzene $(30 \mathrm{~mL})$ was added for 30 min , maintaining the temperature below 20 ${ }^{\circ} \mathrm{C}$ in an ice-bath. The reaction mixture was stirred at room temperature for 30 min . Then to the mixture was added (S) -
(+)-epichlorohydrin (8) (10.0 g, 108 mmol$)$ in benzene $(30 \mathrm{~mL})$ for 25 min , maintaining the temperature below $20^{\circ} \mathrm{C}$ in an ice-bath, and the mixture was stirred for 30 min at room temperature. The solvent was evaporated, and to the residue was added $\mathrm{EtOH}(150 \mathrm{~mL})$ and 10 M KOH solution (50 mL). The reaction mixture was stirred for 8 h under reflux, and the solvent was concentrated to approximately half amount. The residue was added to ice-cooled concentrated HCl (90 mL) and water (90 mL) with stirring. The mixture was extracted with AcOEt , and the organic layer was washed with saturated NaHCO_{3}, $\mathrm{H}_{2} \mathrm{O}$, and brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the residue was purified by silica gel chromatography (Hex/AcOEt $=2: 1)$ to obtain $9 \mathrm{~b}(16.74 \mathrm{~g}, 66.1 \mathrm{mmol}, 61 \%)$ as a light brown oil. $[\alpha]_{\mathrm{D}}{ }^{22}+58.3^{\circ}\left(c=1.015, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $1.38-1.42(1 \mathrm{H}, \mathrm{m}), 1.62-1.67(1 \mathrm{H}, \mathrm{m}), 2.56-2.62(1 \mathrm{H}, \mathrm{m}), 4.31$ $(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{dd}, J=9.2,4.2 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{t}, J=7.8$ $\mathrm{Hz}), 7.40(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 20.48,25.20,31.25,67.99,61.22$, 122.61, 127.01, 130.15, 130.86, 131.23, 136.39, 175.29; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrO}_{2}$: $252.9859\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 252.9861; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrO}_{2}$: C, 52.20; $\mathrm{H}, 3.58$; $\mathrm{Br}, 31.57$. Found: C, 51.93; H, 3.54; Br, 31.29; Optical purity: 96.4% ee (column: Daicel CHIRALCEL OJ-H $4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$; eluent: hexane/2-propanol 98:2, $0.6 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$, 200 nm ; retention time: 70.2 min).
(1S,5R)-1-(3-Bromophenyl)-3-oxabicyclo[3.1.0]hexan-2-one (ent9b). ent-9b ($17.19 \mathrm{~g}, 67.9 \mathrm{mmol}, 63 \%$) was obtained as a brown oil from (R)-(-)-epichlorohydrin $(10.0 \mathrm{~g}, 108 \mathrm{mmol})$ and m bromophenylacetonitrile $(23.29 \mathrm{~g}, 119 \mathrm{mmol})$ by the same procedure used to prepare $9 \mathbf{b}$. $[\alpha]_{\mathrm{D}}{ }^{22}-58.9^{\circ}\left(c=1.002, \mathrm{CHCl}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrO}_{2}$: $252.9859\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 252.9859; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrO}_{2}$: C, 52.20 ; $\mathrm{H}, 3.58 ; \mathrm{Br}, 31.57$. Found: C, 52.06 ; H, 3.60; Br, 31.21; Optical purity: 94.7% ee (column: Daicel CHIRALCEL OJ-H $4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$, eluent: hexane/2-propanol 98:2, $0.6 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, 200 \mathrm{~nm}$; retention time: 64.0 min).
(1S,5R)-1-(4-Bromophenyl)-3-oxabicyclo[3.1.0]hexan-2-one (9c). 9c ($17.07 \mathrm{~g}, 67.4 \mathrm{mmol}, 62 \%$) was obtained as a pale brown solid from (S)-(+)-epichlorohydrin $(10.0 \mathrm{~g}, 108 \mathrm{mmol})$ and p-bromophenylacetonitrile $(23.29 \mathrm{~g}, 119 \mathrm{mmol})$ by the same procedure used to prepare 9b. $[\alpha]_{\mathrm{D}}{ }^{22}+59.5^{\circ}\left(c=1.010, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$ $1.37-1.40(1 \mathrm{H}, \mathrm{m}), 1.59-1.62(1 \mathrm{H}, \mathrm{m}), 2.54-2.58(1 \mathrm{H}, \mathrm{m}), 4.29$ $(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{dd}, J=9.6,4.5 \mathrm{~Hz}), 7.31(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}), 7.48(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 20.46$, 25.13, 31.21, 68.01, 61.22, 121.78, 129.91, 131.76, 133.19, 175.47; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrO}_{2}: 252.9859\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 252.9863; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrO}_{2}$: C, $52.20 ; \mathrm{H}, 3.58 ; \mathrm{Br}, 31.57$. Found: C, $52.01 ; \mathrm{H}, 3.55 ; \mathrm{Br}, 31.21$; Optical purity: 94.8% ee (column: Daicel CHIRALCEL OJ-H $4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$; eluent: hexane $/ 2$ propanol $90: 10,0.6 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}, 200 \mathrm{~nm}$; retention time: 38.3 \min).
(1R,2S)-2-((tert-Butyldiphenylsilyloxy)methyl)-1-phenylcyclopropanecarboxylic Acid (10). To a solution of $9 \mathrm{a}^{13 \mathrm{a}}(7.34 \mathrm{~g}, 42.1 \mathrm{mmol})$ in $\mathrm{EtOH}(59 \mathrm{~mL})$ was added a 10 M KOH solution $(6.3 \mathrm{~mL})$, and the mixture was stirred for 1 h at room temperature. The reaction mixture was added to chilled $\mathrm{AcOEt}(50 \mathrm{~mL})$, concentrated $\mathrm{HCl}(8 \mathrm{~mL})$, and water (30 mL) with vigorous stirring, and the resulting mixture was extracted with AcOEt. The organic layer was washed with water and brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. DMF (59 mL) was added to the solution, $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was filtered off, and the mother liquid was evaporated. Under argon atmosphere, imidazole ($14.3 \mathrm{~g}, 211 \mathrm{mmol}$) and tert-butylchlorodiphenylsilane ($32.9 \mathrm{~mL}, 126 \mathrm{mmol}$) were added to the solution at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred at rt for 30 \min. Then tert-butylchlorodiphenylsilane ($11.0 \mathrm{~mL}, 42.1 \mathrm{mmol}$) and DMF (15 mL) were added and stirred at rt for 30 min . Then another batch of tert-butylchlorodiphenylsilane $(5.48 \mathrm{~mL}, 21.1 \mathrm{mmol})$ and DMF (15 mL) was added, and the reaction mixture was stirred at rt for $30 \mathrm{~min} . \mathrm{AcOEt}$ and water were added, and the reaction mixture was extracted with AcOEt. The organic layer was washed with water and brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was dissolved in $\mathrm{EtOH}(80 \mathrm{~mL}), 10 \mathrm{M} \mathrm{KOH}$ solution (25 mL) was added, and the mixture was stirred for 1 h at rt . The solvent was evaporated to approximately half volume, and the residue was partitioned between

AcOEt and water. The water layer was acidified with HCl to $\mathrm{pH}=1$ and extracted with AcOEt. The organic layer was washed with water and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by silica gel chromatography (hexane/ $\mathrm{AcOEt}=5: 1$) to give $10(8.69 \mathrm{~g}, 20.2 \mathrm{mmol}, 48 \%)$ as a pale brown oil. The spectrum data were identical with that reported previously. ${ }^{17}$ Compound ent-10 ($7.49 \mathrm{~g}, 43.0 \mathrm{mmol}, 56 \%$) was obtained in the same manner from ent9a ($10.20 \mathrm{~g}, 58.6 \mathrm{mmol}$).

Compounds 11-14 and ent-11-14 were prepared according to the reported procedure. ${ }^{17}$

Ethyl 3-Oxo-3-((1S,2R)-2-phenylcyclopropyl)propanoate (15). To a solution of $14(201 \mathrm{mg}, 1.24 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ was added carbonyldiimidazole ($221 \mathrm{mg}, 1.36 \mathrm{mmol}$) under N_{2} atmosphere at room temperature, and the mixture was stirred at the same temperature for 45 min to prepare the imidazolide solution of 14. Using another independent reaction vessel, magnesium chloride (294 $\mathrm{mg}, 3.09 \mathrm{mmol}$), potassium ethyl malonate ($442 \mathrm{mg}, 2.60 \mathrm{mmol}$), and triethylamine ($552 \mu \mathrm{~L}, 3.96 \mathrm{mmol}$) were suspended in $\mathrm{MeCN}(6 \mathrm{~mL})$ under N_{2} atmosphere, and the reaction mixture was stirred for 40 min . Then the prepared imidazolide solution of 14 was added, and the resulting suspension was stirred for 2 h at $80^{\circ} \mathrm{C}$. The insoluble solid was filtered off and washed with MeCN , and the mother liquid was concentrated. The residue was partitioned between AcOEt and 1 M HCl . The organic layer was washed with water and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by silica gel chromatography (hexane/AcOEt $=5: 1)$ to give $15(220 \mathrm{mg}, 0.947$ $\mathrm{mmol}, 77 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{22}-5.1^{\circ}\left(c=0.51, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.22(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.39-1.43(1 \mathrm{H}$, $\mathrm{m}), 1.88-1.94(1 \mathrm{H}, \mathrm{m}), 2.55-2.61(1 \mathrm{H}, \mathrm{m}), 2.74-2.83(1 \mathrm{H}, \mathrm{m}), 3.31$, $3.36(2 \mathrm{H}, \mathrm{ABq}, J=15.1 \mathrm{~Hz}), 4.05-4.19(2 \mathrm{H}, \mathrm{m}), 7.17-7.30(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 12.73,14.05,14.07,29.69,50.76$, 61.22, 126.90, 127.99, 129.19, 135.38, 167.08, 197.93; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}: 233.1172\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 233.1174.

Ethyl 3-Oxo-3-((1R,2S)-2-phenylcyclopropyl)propanoate (ent15). ent-15 ($195 \mathrm{mg}, 0.840 \mathrm{mmol}, 56 \%$) was obtained from ent- 14 $(10.20 \mathrm{~g}, 58.6 \mathrm{mmol})$ as a colorless oil by the same procedure used to prepare 15. $[\alpha]_{\mathrm{D}}{ }^{22}+4.3^{\circ}\left(c=0.51, \mathrm{CHCl}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}: 233.1172\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 233.1175 .

2-Amino-6-((1S,2R)-2-phenylcyclopropyl)pyrimidin-4(3H)-one and the $1 R$ Trans Isomer (16). To a solution of $15(149 \mathrm{mg}, 0.642$ mmol) in $\mathrm{EtOH}(3.0 \mathrm{~mL})$ was added guanidine carbonate (116 mg , 0.642 mmol), 20% sodium ethoxide solution in $\mathrm{EtOH}(503 \mu \mathrm{~L}, 1.284$ mmol), and the mixture was stirred for 5 h at $80{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The reaction mixture was partitioned between AcOEt and water, and neutralized with diluted HCl to $\mathrm{pH}=6$. The organic layer was washed with water and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by silica gel chromatography (NH silica gel, $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH}=5: 1\right)$ to give $16(116 \mathrm{mg}, 0.511 \mathrm{mmol}, 80 \%)$ as a colorless foam: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): cis-isomer $\delta 1.23-$ $1.29(1 \mathrm{H}, \mathrm{m}), 1.61-1.67(1 \mathrm{H}, \mathrm{m}), 2.11-2.19(1 \mathrm{H}, \mathrm{m}), 2.44-2.50$ $(1 \mathrm{H}, \mathrm{m}), 5.20(1 \mathrm{H}, \mathrm{s}), 6.26(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.05-7.29(5 \mathrm{H}, \mathrm{m}), 10.4(1 \mathrm{H}$, br s). cis:trans ratio was 1.3:1 from ${ }^{1} \mathrm{H}$ NMR.

2-Amino-6-((1R,2S)-2-phenylcyclopropyl)pyrimidin-4(3H)-one and the 1S Trans Isomer (ent-16). ent-16 ($113 \mathrm{mg}, 0.498 \mathrm{mmol}$, 79%) was obtained as a colorless foam from ent-15 ($147 \mathrm{mg}, 0.632$ mmol) by the same procedure used to prepare 16. The cis:trans ratio was 1.5:1 from ${ }^{1} \mathrm{H}$ NMR.

Ethyl 3-Oxo-3-((1R,2R)-2-phenylcyclopropyl)propanoate (18). 18 ($306 \mathrm{mg}, 1.32 \mathrm{mmol}, 82 \%$) was obtained from $17^{19}(261 \mathrm{mg}, 1.61$ $\mathrm{mmol})$ by the same procedure used to prepare $15 .[\alpha]_{\mathrm{D}}{ }^{22}-422.4^{\circ}(c=$ $\left.0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.25(3 \mathrm{H}, \mathrm{t}, J=7.3$ $\mathrm{Hz}), 1.44-1.50(1 \mathrm{H}, \mathrm{m}), 1.74-1.79(1 \mathrm{H}, \mathrm{m}), 2.27-2.34(1 \mathrm{H}, \mathrm{m})$, $2.56-2.64(1 \mathrm{H}, \mathrm{m}), 3.60(2 \mathrm{H}, \mathrm{s}), 4.18(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}), 7.09-7.13$ $(2 \mathrm{H}, \mathrm{m}), 7.20-7.32(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3,} 150 \mathrm{MHz}\right) \delta 14.08$, 19.50, 30.12, $32.35,50.33,61.41,126.19,126.74,128.55,139.80$, 167.08, 200.86; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}$: 233.1172 [(M+ H^{+}], found 233.1174 .

Ethyl 3-Oxo-3-((1S,2S)-2-phenylcyclopropyl)propanoate (ent-18). ent-18 ($333 \mathrm{mg}, 1.41 \mathrm{mmol}, 81 \%$) was obtained as a colorless oil from ent $-17^{19}(288 \mathrm{mg}, 1.78 \mathrm{mmol})$ by the same procedure used to prepare
18. $[\alpha]_{\mathrm{D}}{ }^{22}+424.0^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}: 233.1172\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 233.1175.

2-Amino-6-((1R,2R)-2-phenylcyclopropyl)pyrimidin-4(3H)-one (19). 19 ($105 \mathrm{mg}, 0.462 \mathrm{mmol}, 57 \%$) was obtained as a colorless solid from 18 ($189 \mathrm{mg}, 0.814 \mathrm{mmol}$) by the same procedure used to prepare 16. $[\alpha]_{\mathrm{D}}{ }^{25}-501.8^{\circ}\left(c=0.51\right.$, DMSO) ; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $400 \mathrm{MHz}): \delta 1.28-1.34(1 \mathrm{H}, \mathrm{m}), 1.50-1.57(1 \mathrm{H}, \mathrm{m}), 1.93-1.99(1 \mathrm{H}$, m), 2.33-2.39 (1H, m), $5.56(1 \mathrm{H}, \mathrm{s}), 6.46(2 \mathrm{H}, \mathrm{br}$ s), $7.11-7.19(2 \mathrm{H}$, m), 7.24-7.29 (3H, m), $10.54(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 150$ $\mathrm{MHz}) \delta 17.79,26.41,29.70,99.60,126.65,129.26,142.61,156.75$, 163.19, 169.35; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}: 228.1131$ [($\mathrm{M}+$ $H)^{+}$], found 228.1130 .

2-Amino-6-((1S, 2S)-2-phenylcyclopropyl)pyrimidin-4(3H)-one (ent-19). ent-19 ($176 \mathrm{mg}, 0.776 \mathrm{mmol}, 78 \%$) was obtained as a colorless solid from ent-18 ($232 \mathrm{mg}, 0.995 \mathrm{mmol}$) by the same procedure used to prepare 19. $[\alpha]_{\mathrm{D}}{ }^{25}+504.5^{\circ}(c=0.51$, DMSO $)$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}$: $228.1131\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 228.1129.

Sodium (1R,2S)-2-(Hydroxymethyl)-1-phenylcyclopropanecarboxylate (20a). To a suspension of $9 \mathbf{a}^{13 \mathrm{a}}(10.6 \mathrm{~g}, 61.0 \mathrm{mmol})$ in EtOH (53 mL) and water $(9.2 \mathrm{~mL})$ was added 10 N KOH solution $(9.2 \mathrm{~mL}, 92 \mathrm{mmol})$, and the solution was stirred for 1 h at room temperature. The reaction mixture was poured into the chilled $\mathrm{Et}_{2} \mathrm{O}$ $(120 \mathrm{~mL})$ and $2 \mathrm{M} \mathrm{HCl}(61 \mathrm{~mL})$ with vigorous stirring. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with water and brine and dried with $\mathrm{MgSO}_{4} . \mathrm{MgSO}_{4}$ was filtered off, and to the mother liquid was added 28% sodium methoxide solution MeOH $(12.5 \mathrm{~mL})$. Precipitate was separated by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$ to give 20a ($10.4 \mathrm{~g}, 48.6 \mathrm{mmol}, 80 \%$) as a pale brown solid. $[\alpha]_{\mathrm{D}}{ }^{23}+76.2^{\circ}(c=0.50, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta$ $0.86-0.89(1 \mathrm{H}, \mathrm{m}), 1.62-1.67(1 \mathrm{H}, \mathrm{m}), 1.09-1.14(1 \mathrm{H}, \mathrm{m}), 1.22-$ $1.28(1 \mathrm{H}, \mathrm{m}), 3.26-3.31(1 \mathrm{H}, \mathrm{m}), 3.79-3.84(1 \mathrm{H}, \mathrm{m}), 6.18(1 \mathrm{H}, \mathrm{br}$ s), $7.05-7.09(1 \mathrm{H}, \mathrm{m}), 7.16-7.20(2 \mathrm{H}, \mathrm{m}), 7.24-7.27(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta$ 18.63, 28.88, 39.65, 64.50, 127.01, 128.96, 129.78, 145.15, 179.85; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3}$: $193.0859\left[(\mathrm{M}-\mathrm{Na}+2 \mathrm{H})^{+}\right]$, found 193.0860.

Sodium (1R,2S)-1-(3-Bromophenyl)-2-(hydroxymethyl)cyclopropanecarboxylate (20b). 20b ($16.26 \mathrm{~g}, 55.5 \mathrm{mmol}, 87 \%$) was obtained as a colorless solid from $9 \mathrm{~b}(16.13 \mathrm{~g}, 63.7 \mathrm{mmol})$ by the same procedure used to prepare 20a. $[\alpha]_{\mathrm{D}}^{22}+64.0^{\circ}(c=0.50$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta 0.90-0.93(1 \mathrm{H}, \mathrm{m})$, $1.17-1.20(1 \mathrm{H}, \mathrm{m}), 1.23-1.30(1 \mathrm{H}, \mathrm{m}), 3.34-3.36(1 \mathrm{H}, \mathrm{m}), 3.77-$ $3.82(1 \mathrm{H}, \mathrm{m}), 6.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.15(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{d}, J=$ $7.8 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $125 \mathrm{MHz}) \delta 16.85,28.50,37.43,61.58,120.58,127.08,127.68,129.42$, 131.57, 148.43, 174.18; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrO}_{3}: 270.9964$ $\left[(\mathrm{M}-\mathrm{Na}+2 \mathrm{H})^{+}\right]$, found 270.9967 .

Sodium (1S,2R)-1-(3-Bromophenyl)-2-(hydroxymethyl)cyclopropanecarboxylate (ent-20b). ent-20b ($13.20 \mathrm{~g}, 45.0 \mathrm{mmol}$, 94%) was obtained as a colorless solid from ent-9b (12.15 g, 48.0 $\mathrm{mmol})$ by the same procedure used to prepare 20a. $[\alpha]_{\mathrm{D}}{ }^{22}-65.6^{\circ}(c=$ $0.50, \mathrm{MeOH})$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrO}_{3}: 270.9964$ [(M $\left.\mathrm{Na}+2 \mathrm{H})^{+}\right]$, found 270.9969 .

Sodium (1S,2R)-1-(4-Bromophenyl)-2-(hydroxymethyl)cyclopropanecarboxylate (20c). 20c (18.40 g, $62.8 \mathrm{mmol}, 95 \%)$ was obtained as a colorless solid from $9 \mathrm{c}(16.69 \mathrm{~g}, 65.9 \mathrm{mmol})$ by the same procedure used to prepare 20a. $[\alpha]_{\mathrm{D}}^{22}+64.0^{\circ}(c=0.50$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta 0.86-0.90(1 \mathrm{H}, \mathrm{m})$, $1.17-1.20(1 \mathrm{H}, \mathrm{m}), 1.21-1.27(1 \mathrm{H}, \mathrm{m}), 3.31-3.35(1 \mathrm{H}, \mathrm{m}), 3.77-$ $3.81(1 \mathrm{H}, \mathrm{m}), 7.21(2 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz}), 7.35(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 125 \mathrm{MHz}\right) \delta 16.77,28.41,37.08,61.56,117.77$, 130.00, 130.77, 145.08, 174.44; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrO}_{3}$: $270.9964\left[(\mathrm{M}-\mathrm{Na}+2 \mathrm{H})^{+}\right]$, found 270.9969.
(1R,2S)-1-Phenylcyclopropane-1,2-dicarboxylic Acid (21a). To a solution of 20a $(1.75 \mathrm{~g}, 8.17 \mathrm{mmol})$ in $\mathrm{MeCN}(17.5 \mathrm{~mL})$ and water $(8.8 \mathrm{~mL})$ was added sodium periodate $(3.50 \mathrm{~g}, 16.3 \mathrm{mmol})$ and ruthenium(III) chloride ($51 \mathrm{mg}, 0.245 \mathrm{mmol}$), and the mixture was stirred for 25 h at room temperature. The reaction mixture was poured into the chilled $\mathrm{AcOEt}(60 \mathrm{~mL}), 2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, and water (60 mL) with vigorous stirring, and the resulting mixture was extracted
with AcOEt. Then the product was extracted with saturated NaHCO_{3} two times. The water layer was acidified with HCl , and the mixture was extracted with AcOEt. The organic layer was washed with water and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residual solid was washed with hexane to give 21a ($1.27 \mathrm{~g}, 6.16 \mathrm{mmol}, 75 \%$) as a pale gray solid. $[\alpha]_{\mathrm{D}}{ }^{22}+166.3^{\circ}(c=0.51, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 1.61-1.65(1 \mathrm{H}, \mathrm{m}), 2.19-2.23(1 \mathrm{H}, \mathrm{m}), 2.35-2.40(1 \mathrm{H}, \mathrm{m})$, $7.30-7.36(3 \mathrm{H}, \mathrm{m}), 7.42-7.45(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta$ 19.32, 29.61, 38.49, 128.34, 128.69, 129.75, 137.18, 176.78, 176.86; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{4}: 207.0652\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 207.0654.
(1R,2S)-1-(3-Bromophenyl)cyclopropane-1,2-dicarboxylic Acid (21b). 21b ($16.20 \mathrm{~g}, 56.8 \mathrm{mmol}, 87 \%$) was obtained as a pale gray solid from 20b $(19.25 \mathrm{~g}, 65.7 \mathrm{mmol})$ by the same procedure used to prepare 21a. $[\alpha]_{\mathrm{D}}{ }^{22}+155.0^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 1.62-1.65(1 \mathrm{H}, \mathrm{m}), 2.20-2.24(1 \mathrm{H}, \mathrm{m}), 2.35-2.39(1 \mathrm{H}, \mathrm{m})$, $7.22(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{dt}, J=7.8,1.8 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{dt}, J$ $=7.8,1.8 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ δ 19.23, 29.73, 37.87, 122.49, 128.49, 130.19, 131.61, 132.89, 139.17, 176.47; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrO}_{4}: 284.9757\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 284.9763.
(1S,2R)-1-(3-Bromophenyl)cyclopropane-1,2-dicarboxylic Acid (ent-21b). ent-21b ($168.6 \mathrm{mg}, 0.591 \mathrm{mmol}, 80 \%$) was obtained as a pale gray solid from ent-20b ($218 \mathrm{mg}, 0.743 \mathrm{mmol}$) by the same procedure used to prepare 21a. $[\alpha]_{\mathrm{D}}^{22}-143.2^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrO}_{4}: 284.9757\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 284.9760.
(1R,2S)-1-(4-Bromophenyl)cyclopropane-1,2-dicarboxylic Acid (21c). 21c ($13.43 \mathrm{~g}, 47.1 \mathrm{mmol}, 69 \%$) was obtained as a grayish brown solid from $20 \mathrm{c}(20.13 \mathrm{~g}, 68.7 \mathrm{mmol})$ by the same procedure used to prepare 21a. $[\alpha]_{\mathrm{D}}^{22}+174.0^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.59-1.63(1 \mathrm{H}, \mathrm{m}), 2.18-2.23(1 \mathrm{H}, \mathrm{m}), 2.32-$ $2.36(1 \mathrm{H}, \mathrm{m}), 7.30(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.48(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 19.27, 29.69, 37.84, 122.59, 131.46, 131.85, 136.11, 176.43; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrO}_{4}: 284.9757$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 284.9765 .
(1R,2S)-2-(3-Ethoxy-3-oxopropanoyl)-1-phenylcyclopropanecarboxylic Acid (22a). The mixture of 22a and ethyl malonate (2.33 g) was obtained as a light brown oil from 21a ($1.52 \mathrm{~g}, 7.37 \mathrm{mmol}$) by the same procedure used to prepare 15, except for silica gel chromatography eluent $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=30: 1\right)$. It was used in the next step without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$ $1.24-1.30(1 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.58-1.61(1 \mathrm{H}, \mathrm{m})$, $2.58-2.62(1 \mathrm{H}, \mathrm{m}), 2.98(2 \mathrm{H}, \mathrm{br}$ s), 4.23-4.28(2H, m), 7.29-7.45 ($5 \mathrm{H}, \mathrm{m}$).
(1R,2S)-1-(3-Bromophenyl)-2-(3-ethoxy-3-oxopropanoyl)cyclopropanecarboxylic Acid (22b). The mixture of 22b and ethyl malonate $(6.63 \mathrm{~g})$ was obtained from $21 \mathrm{~b}(6.56 \mathrm{~g}, 23.0 \mathrm{mmol})$ by the same procedure used to prepare 22a, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.18-1.30$ $(1 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.56-1.58(1 \mathrm{H}, \mathrm{m}), 2.59-2.63(1 \mathrm{H}$, $\mathrm{m}), 2.95(2 \mathrm{H}, \mathrm{br}$ s), $4.24-4.30(2 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.39$ $(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{s})$.
(1S,2R)-1-(3-Bromophenyl)-2-(3-ethoxy-3-oxopropanoyl)cyclopropanecarboxylic Acid (ent-22b). The mixture of ent-22b and ethyl malonate (6.90 g) was obtained from ent-21b $(5.51 \mathrm{~g}, 19.3$ mmol) by the same procedure used to prepare 22 a , which was used in the next step without further purification.
(1R,2S)-1-(4-Bromophenyl)-2-(3-ethoxy-3-oxopropanoyl)cyclopropanecarboxylic Acid (22c). The mixture of 22c and ethyl malonate $(10.15 \mathrm{~g})$ was obtained from $21 \mathrm{c}(7.51 \mathrm{~g}, 26.3 \mathrm{mmol})$ by the same procedure used to prepare 22a, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.17-1.29$ $(1 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.53-1.56(1 \mathrm{H}, \mathrm{m}), 2.57-2.60(1 \mathrm{H}$, m), $2.93(2 \mathrm{H}, \mathrm{br}$ s), $4.23-4.29(2 \mathrm{H}, \mathrm{m}), 7.31(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.49$ $(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$).
(1R,2S)-Methyl 2-(2-Amino-1-methyl-6-oxo-1,6-dihydropyrimi-din-4-yl)-1-phenylcyclopropanecarboxylate (24a). To a solution of the mixture of 22a and ethyl malonate $(2.23 \mathrm{~g})$ in $\mathrm{EtOH}(33 \mathrm{~mL})$ was added 20% sodium ethoxide EtOH solution ($2.76 \mathrm{~mL}, 7.05 \mathrm{mmol}$). After stirring for 10 min , guanidine carbonate $(635 \mathrm{mg}, 3.53 \mathrm{mmol})$
was added, and the suspension was stirred for 25 h at $95{ }^{\circ} \mathrm{C}$. Then the reaction mixture was partitioned between AcOEt and water. The organic layer was washed water, brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by silica gel chromatography $\left[\mathrm{CHCl}_{3} /\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / 28 \% \mathrm{NH}_{3}=32: 6: 0.5\right)=3: 1\right]$ to obtain 24a ($676 \mathrm{mg}, 2.26 \mathrm{mmol}, 32 \%$ from 21a) as a colorless foam. $[\alpha]_{\mathrm{D}}{ }^{23}$ $+178.0^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.51-1.55$ $(1 \mathrm{H}, \mathrm{m}), 2.19-2.23(1 \mathrm{H}, \mathrm{m}), 2.43-2.47(1 \mathrm{H}, \mathrm{m}), 3.36(3 \mathrm{H}, \mathrm{s}), 3.53$ $(3 \mathrm{H}, \mathrm{s}), 5.24(2 \mathrm{H}, \mathrm{s}), 5.98(1 \mathrm{H}, \mathrm{s}), 7.27-7.36(3 \mathrm{H}, \mathrm{m}), 7.44-7.47$ $(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 18.83,27.49,32.40,38.34$, 52.24, 102.30, 127.60, 128.51, 129.44, 139.39, 154.79, 162.43, 162.78, 171.16; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}: 300.1343\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 300.1346 .
(1R,2S)-Methyl 2-(2-amino-1-methyl-6-oxo-1,6-dihydropyrimi-din-4-yl)-1-(3-bromophenyl)cyclopropanecarboxylate (24b). 24b $(2.94 \mathrm{~g}, 7.77 \mathrm{mmol}, 34 \%$ from 21 b$)$ was obtained as a colorless foam from the mixture of $\mathbf{2 2 b}$ and ethyl malonate $(6.63 \mathrm{~g})$ by the same procedure used to prepare 24a. $[\alpha]_{\mathrm{D}}{ }^{22}+165.4^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.51-1.55(1 \mathrm{H}, \mathrm{m}), 2.19-2.22(1 \mathrm{H}, \mathrm{m})$, $2.40-2.44(1 \mathrm{H}, \mathrm{m}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.54(3 \mathrm{H}, \mathrm{s}), 5.16(2 \mathrm{H}, \mathrm{s}), 5.98(1 \mathrm{H}$, s), $7.21(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{d}, J=$ $7.8 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 18.69,27.59$, 32.64, 37.80, 52.39, 102.52, 122.33, 128.29, 130.02, 130.85, 132.75, 141.63, 154.78, 162.28, 162.39, 170.58; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrN}_{3} \mathrm{O}_{3}: 378.0448\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 378.0453 .
(1S,2R)-Methyl 2-(2-amino-1-methyl-6-oxo-1,6-dihydropyrimi-din-4-yl)-1-(3-bromophenyl)cyclopropanecarboxylate (ent-24b). ent-24b ($2.08 \mathrm{~g}, 5.50 \mathrm{mmol}, 29 \%$ from ent-21b) was obtained as a colorless foam from the mixture of ent-22b and ethyl malonate (6.80 $\mathrm{g})$ by the same procedure used to prepare 24a. $[\alpha]_{\mathrm{D}}{ }^{22}-164.6^{\circ}(c=$ $0.50, \mathrm{CHCl}_{3}$); HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrN}_{3} \mathrm{O}_{3}: 378.0448$ [(M+ $\mathrm{H})^{+}$], found 378.0455.
(1R,2S)-Methyl 2-(2-Amino-1-methyl-6-oxo-1,6-dihydropyrimi-din-4-yl)-1-(4-bromophenyl)cyclopropanecarboxylate (24c). 24c $(3.22 \mathrm{~g}, 8.51 \mathrm{mmol}, 33 \%$ from 21 c) was obtained as a colorless foam from the mixture of 20 c and ethyl malonate $(10.02 \mathrm{~g})$ by the same procedure used to prepare 24a. $[\alpha]_{\mathrm{D}}{ }^{22}+198.0^{\circ}(c=0.50$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3,} 600 \mathrm{MHz}\right) \delta 1.49-1.52(1 \mathrm{H}, \mathrm{m}), 2.19-$ $2.22(1 \mathrm{H}, \mathrm{m}), 2.36-2.40(1 \mathrm{H}, \mathrm{m}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.53(3 \mathrm{H}, \mathrm{s}), 5.07$ $(2 \mathrm{H}, \mathrm{s}), 5.97(1 \mathrm{H}, \mathrm{s}), 7.33(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{d}, J=8.1$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 18.69,27.60,32.62,37.77,52.34$, 102.53, 121.71, 131.34, 131.60, 138.47, 154.68, 162.36, 162.48, 170.65; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrN}_{3} \mathrm{O}_{3}: 378.0448\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 378.0453.
(1R,2S)-Methyl 2-(2-(Bis(tert-butoxycarbonyl)amino)-1-methyl-6-oxo-1,6-dihydropyrimidin-4-yl)-1-phenylcyclopropanecarboxylate (25a). To a solution of $24 \mathrm{a}(612 \mathrm{mg}, 2.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.1 \mathrm{~mL})$ was added N, N-dimethylaminopyridine ($74.9 \mathrm{mg}, 0.613 \mathrm{mmol}$) and di-tert-butyl carbonate $(1.19 \mathrm{~mL}, 5.11 \mathrm{mmol})$ under N_{2} atmosphere, and the mixture was stirred for 1 h at room temperature. The solvent was evaporated, and the residue was purified by silica gel chromatography (hexane $/ \mathrm{AcOEt}=1: 1$) to obtain 25a $(863 \mathrm{mg}, 1.73 \mathrm{mmol}, 85 \%)$ as a colorless foam. $[\alpha]_{\mathrm{D}}{ }^{22}+102.0^{\circ}\left(c=0.51, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta 1.47(9 \mathrm{H}, \mathrm{s}), 1.49(9 \mathrm{H}, \mathrm{s}), 1.65-1.68(1 \mathrm{H}, \mathrm{m}), 2.16-2.19$ $(1 \mathrm{H}, \mathrm{m}), 2.48-2.52(1 \mathrm{H}, \mathrm{m}), 3.43(3 \mathrm{H}, \mathrm{s}), 3.52(3 \mathrm{H}, \mathrm{s}), 6.43(1 \mathrm{H}, \mathrm{s})$, $7.26-7.36(3 \mathrm{H}, \mathrm{m}), 7.44-7.47(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 19.11,27.82,27.85,30.13,32.28,39.18,52.27,84.76,85.13$, 111.55, 127.70, 128.49, 129.50, 139.22, 148.51, 148.53, 148.55, 161.85, 162.62, 170.05; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{7}: 500.2391[(\mathrm{M}+$ $\mathrm{H})^{+}$], found 500.2394 .
(1R,2S)-Methyl 2-(2-(Bis(tert-butoxycarbonyl)amino)-1-methyl-6-oxo-1,6-dihydropyrimidin-4-yl)-1-(3-bromophenyl)cyclopropanecarboxylate (25b). 25b ($3.92 \mathrm{~g}, 6.78 \mathrm{mmol}, 89 \%$) was obtained as a colorless foam from $24 \mathrm{~b}(2.87 \mathrm{~g}, 7.59 \mathrm{mmol})$ by the same procedure used to prepare 25 a . $[\alpha]_{\mathrm{D}}{ }^{22}+105.4^{\circ}(c=0.50$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.47(9 \mathrm{H}, \mathrm{s}), 1.50(9 \mathrm{H}, \mathrm{s})$, $1.63-1.67(1 \mathrm{H}, \mathrm{m}), 2.17-2.20(1 \mathrm{H}, \mathrm{m}), 2.47-2.50(1 \mathrm{H}, \mathrm{m}), 3.43$ $(3 \mathrm{H}, \mathrm{s}), 3.53(3 \mathrm{H}, \mathrm{s}), 6.42(1 \mathrm{H}, \mathrm{s}), 7.21(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.39(1 \mathrm{H}$, d, $J=7.8 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.03,27.83,27.86,30.16,32.40,38.50,52.40$,
84.83, 85.18, 111.74, 111.76, 122.34, 128.33, 130.02, 130.91, 132.68, 141.39, 148.53, 148.54, 148.67, 161.28, 162.57, 169.54; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BrN}_{3} \mathrm{O}_{7}: 578.1496\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 578.1501 .
(1S,2R)-Methyl 2-(2-(Bis(tert-butoxycarbonyl)amino)-1-methyl-6-oxo-1,6-dihydropyrimidin-4-yl)-1-(3-bromophenyl)cyclopropanecarboxylate (ent-25b). ent-25b (1.32 g, 2.28 mmol , 82%) was obtained as a colorless foam from ent-24b (1.05 g, 2.78 $\mathrm{mmol})$ by the same procedure used to prepare 25 a . $[\alpha]_{\mathrm{D}}{ }^{22}-101.0^{\circ}(\mathrm{c}$ $\left.=0.50, \mathrm{CHCl}_{3}\right) ;$ HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BrN}_{3} \mathrm{O}_{7}: 578.1496[(\mathrm{M}$ $+\mathrm{H})^{+}$, found 578.1503 .
(1R,2S)-Methyl 2-(2-(Bis(tert-butoxycarbonyl)amino)-1-methyl-6-oxo-1,6-dihydropyrimidin-4-yl)-1-(4-bromophenyl)cyclopropanecarboxylate (25c). 25c (4.43 g, $7.66 \mathrm{mmol}, 92 \%$) was obtained as a colorless foam from $24 \mathrm{c}(3.15 \mathrm{~g}, 8.33 \mathrm{mmol})$ by the same procedure used to prepare 25a. $[\alpha]_{\mathrm{D}}^{22}+118.8^{\circ}(c=0.50$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.47(9 \mathrm{H}, \mathrm{s}), 1.49(9 \mathrm{H}, \mathrm{s})$, $1.61-1.65(1 \mathrm{H}, \mathrm{m}), 2.17-2.20(1 \mathrm{H}, \mathrm{m}), 2.40-2.48(1 \mathrm{H}, \mathrm{m}), 3.43$ $(3 \mathrm{H}, \mathrm{s}), 3.52(3 \mathrm{H}, \mathrm{s}), 6.41(1 \mathrm{H}, \mathrm{s}), 7.33(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.46(2 \mathrm{H}$, $\mathrm{d}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.00,27.82,27.85$, 30.15, 32.49, 38.36, 52.36, 84.81, 85.16, 111.73, 121.80, 131.34, 131.62, 138.26, 148.52, 148.54, 148.64, 161.33, 162.57, 169.64; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BrN}_{3} \mathrm{O}_{7}$: $578.1496\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 578.1502.
(1R,2S)-2-(2-(Bis(tert-butoxycarbonyl)amino)-1-methyl-6-oxo-1,6-dihydropyrimidin-4-yl)-1-phenylcyclopropanecarboxylic Acid (27a). To a solution of 25a ($825 \mathrm{mg}, 1.65 \mathrm{mmol}$) in EtOH (8.2 $\mathrm{mL})$ was added water $(0.8 \mathrm{~mL})$ and 10 M KOH solution, and the mixture was stirred for 4 h at $60^{\circ} \mathrm{C}$. The reaction mixture was poured into the chilled AcOEt $(20 \mathrm{~mL}), 2 \mathrm{M} \mathrm{HCl}(6 \mathrm{~mL})$, and water $(10 \mathrm{~mL})$ with vigorous stirring, and the insoluble solid was filtered off. The mother liquor was extracted with AcOEt , and the organic layer was washed with water and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was combined with the solid already obtained, and washed with hexane to give $\mathbf{2 6 a}(595 \mathrm{mg})$ as a colorless solid.

To a suspension of 26 a (550 mg) was added N, O-bis(trimethylsilyl)acetamide ($1.05 \mathrm{~mL}, 4.28 \mathrm{mmol}$) under N_{2} atmosphere, and the mixture was stirred for 30 min at room temperature to give a clear solution. Then N, N-dimethylaminopyridine $(34.8 \mathrm{mg}$, 0.285 mmol) and di-tert-butyl carbonate ($0.497 \mathrm{~mL}, 2.14 \mathrm{mmol}$) were added, and the solution was stirred another 1 h at room temperature. The solvent was evaporated, and the residue was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=20: 1\right)$ to obtain $27 \mathrm{a}(578 \mathrm{mg}, 1.19$ $\mathrm{mmol}, 78 \%)$ as a pale brown foam. $[\alpha]_{\mathrm{D}}{ }^{22}+120.2^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.41(9 \mathrm{H}, \mathrm{s}), 1.53(9 \mathrm{H}, \mathrm{s}), 1.72-1.75$ $(1 \mathrm{H}, \mathrm{m}), 2.21-2.24(1 \mathrm{H}, \mathrm{m}), 2.62-2.66(1 \mathrm{H}, \mathrm{m}), 3.42(3 \mathrm{H}, \mathrm{s}), 6.46$ $(1 \mathrm{H}, \mathrm{s}), 7.28-7.36(3 \mathrm{H}, \mathrm{m}), 7.45-7.48(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 19.36,27.78,27.85,30.19,33.79,38.80,84.95,85.15$, 111.58, 127.85, 128.46, 130.00, 138.94, 148.35, 148.56, 148.56, 161.07, 162.90, 173.19; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{7}: 486.2235[(\mathrm{M}+$ $\mathrm{H})^{+}$], found 486.2237 .
(1R,2S)-2-(2-(Bis(tert-butoxycarbonyl)amino)-1-methyl-6-oxo-1,6-dihydropyrimidin-4-yl)-1-(3-bromophenyl) cyclopropanecarboxylic Acid (27b). 26b (2.88 g) was obtained as a colorless solid from 25 b ($3.85 \mathrm{~g}, 6.66 \mathrm{mmol}$) by the same procedure used to prepare 26a. Then $27 \mathrm{~b}(2.99 \mathrm{~g}, 5.30 \mathrm{mmol}, 80 \%$ from $\mathbf{2 5 b}$) was obtained as an orange brown foam from $26 \mathbf{b}(2.85 \mathrm{~g})$ by the same procedure used to prepare 27a. $[\alpha]_{\mathrm{D}}{ }^{22}+107.3^{\circ}\left(c=0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.42(9 \mathrm{H}, \mathrm{s}), 1.48(9 \mathrm{H}, \mathrm{s}), 1.71-1.75$ $(1 \mathrm{H}, \mathrm{m}), 2.22-2.25(1 \mathrm{H}, \mathrm{m}), 2.60-2.64(1 \mathrm{H}, \mathrm{m}), 3.42(3 \mathrm{H}, \mathrm{s}), 6.47$ $(1 \mathrm{H}, \mathrm{s}), 7.21(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.43(1 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.40$, 27.79, 27.86, 30.21, 33.47, 38.46, 85.20, 85.34, 111.62, 122.21, 128.75, 129.96, 130.89, 133.00, 141.38, 148.53, 148.58, 148.68, 161.06, 162.94, 172.80; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{BrN}_{3} \mathrm{O}_{7}: 564.1340\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 564.1345 .
(1S,2R)-2-(2-(Bis(tert-butoxycarbonyl)amino)-1-methyl-6-oxo-1,6-dihydropyrimidin-4-yl)-1-(3-bromophenyl) cyclopropanecarboxylic Acid (ent-27b). ent-26b (897 mg) was obtained as a colorless solid from ent-25b $(1.27 \mathrm{~g}, 2.20 \mathrm{mmol})$ by the same procedure used to prepare 26a. Then ent-27b (790 mg, 1.40 mmol, 78% from ent-25b) was obtained as a yellow brown foam from
ent-26b $(729 \mathrm{mg})$ by the same procedure used to prepare $27 \mathrm{a} .[\alpha]_{\mathrm{D}}{ }^{22}$ $-112.7^{\circ}\left(c=0.30, \mathrm{CHCl}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{BrN}_{3} \mathrm{O}_{7}$: $564.1340\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 564.1345 .
(1R,2S)-2-(2-(Bis(tert-butoxycarbonyl)amino)-1-methyl-6-oxo-1,6-dihydropyrimidin-4-yl)-1-(4-bromophenyl)cyclopropanecarboxylic Acid (27c). 26c $(2.90 \mathrm{~g})$ was obtained as a colorless solid from $25 \mathrm{c}(3.89 \mathrm{~g}, 6.72 \mathrm{mmol})$ by the same procedure used to prepare 26a. Then $27 \mathrm{c}(2.71 \mathrm{~g}, 4.80 \mathrm{mmol}, 72 \%$ from 25 c) was obtained as an orange brown foam from $\mathbf{2 6 c}(2.88 \mathrm{~g})$ by the same procedure used to prepare 27a. $[\alpha]_{\mathrm{D}}{ }^{22}+122.0^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.44(9 \mathrm{H}, \mathrm{s}), 1.49(9 \mathrm{H}, \mathrm{s}), 1.71-1.74$ $(1 \mathrm{H}, \mathrm{m}), 2.24-2.27(1 \mathrm{H}, \mathrm{m}), 2.60-2.64(1 \mathrm{H}, \mathrm{m}), 3.44(3 \mathrm{H}, \mathrm{s}), 6.48$ $(1 \mathrm{H}, \mathrm{s}), 7.37(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.50(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.34,27.78,27.84,30.22,33.79,38.17,84.99$, 85.22, 111.58, 121.93, 131.58, 131.74, 138.02, 148.36, 148.52, 148.61, 160.80, 162.94, 172.64; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{BrN}_{3} \mathrm{O}_{7}$: $564.1340\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 564.1343 .

2-Bis(tert-butoxycarbonyl)amino-3-methyl-6-((1S,2R)-2-phenylcyclopropyl)pyrimidin-4(3H)-one (28a). To a suspension of 27a $(74.0 \mathrm{mg}, 0.152 \mathrm{mmol})$ and $11(46.1 \mathrm{mg}, 0.183 \mathrm{mmol})$ in toluene $(11 \mathrm{~mL})$ was added tri- n-butyltin hydride $(0.122 \mathrm{~mL}, 0.457 \mathrm{mmol})$, azoisobutyronitrile $(5.0 \mathrm{mg}, 0.030 \mathrm{mmol})$, and tri- n-butylphosphine ($0.114 \mathrm{~mL}, 0.457 \mathrm{mmol}$) under N_{2} atmosphere and shading by wrapping the vessel with aluminum foil, and the mixture was stirred for 20 min at room temperature and then for 4.5 h at $80^{\circ} \mathrm{C}$. The solvent was evaporated, and the residue was purified by silica gel chromatography (hexane/AcOEt $=1: 1$) to obtain $28 \mathrm{a}(35.5 \mathrm{mg}$, $0.084 \mathrm{mmol}, 53 \%)$ as a colorless solid. $[\alpha]_{\mathrm{D}}{ }^{22}+4.0^{\circ}\left(c=0.30, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.41(9 \mathrm{H}, \mathrm{s}), 1.53(9 \mathrm{H}, \mathrm{s}), 1.72-1.75$ $(1 \mathrm{H}, \mathrm{m}), 2.21-2.24(1 \mathrm{H}, \mathrm{m}), 2.62-2.66(1 \mathrm{H}, \mathrm{m}), 3.42(3 \mathrm{H}, \mathrm{s}), 6.46$ $(1 \mathrm{H}, \mathrm{s}), 7.28-7.36(3 \mathrm{H}, \mathrm{m}), 7.45-7.48(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 11.03,25.21,27.02,27.79,27.81,29.92,84.54,84.75$, 110.09, 126.48, 128.03, 129.33, 136.27, 147.70, 148.15, 148.36, 162.51, 163.04; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5}: 442.2336\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 442.2343.

2-Bis(tert-butoxycarbonyl)amino-3-methyl-6-[(1S,2R)-2-(3-bromophenyl)cyclopropyl]pyrimidin-4(3H)-one (28b). 28b (442 mg, $0.850 \mathrm{mmol}, 48 \%)$ was obtained as a colorless solid from $27 \mathrm{~b}(1.00 \mathrm{~g}$, 1.77 mmol) by the same procedure used to prepare $28 \mathrm{a} .[\alpha]_{\mathrm{D}}^{22}+1.6^{\circ}$ $\left(c=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.38(9 \mathrm{H}, \mathrm{s}), 1.40$ $(9 \mathrm{H}, \mathrm{s}), 1.45-1.51(1 \mathrm{H}, \mathrm{m}), 1.60-1.65(1 \mathrm{H}, \mathrm{m}), 2.32-2.38(1 \mathrm{H}, \mathrm{m})$, $2.60-2.66(1 \mathrm{H}, \mathrm{m}), 3.31(3 \mathrm{H}, \mathrm{s}), 6.06(1 \mathrm{H}, \mathrm{s}), 7.00-7.06(2 \mathrm{H}, \mathrm{m})$, $7.23(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 11.04, 25.31, 26.41, 27.81, 27.81, 29.98, 84.61, 84.80, 110.52, 122.07, 127.59, 129.45, 129.62, 132.71, 138.85, 147.96, 148.20, 148.34, 162.46, 162.56; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BrN}_{3} \mathrm{O}_{5}: 520.1442\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 520.1445 .

2-Bis(tert-butoxycarbonyl)amino-3-methyl-6-[(1R,2S)-2-(3-bromophenyl)cyclopropyl]pyrimidin-4(3H)-one (ent-28b). ent-28b ($122 \mathrm{mg}, 0.235 \mathrm{mmol}, 52 \%$) was obtained as a pale gray solid from ent-27b ($253 \mathrm{mg}, 0.447 \mathrm{mmol}$) by the same procedure used to prepare 28a. $[\alpha]_{\mathrm{D}}^{22}-8.8^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BrN}_{3} \mathrm{O}_{5}: 520.1442\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 520.1442 .

2-Bis(tert-butoxycarbonyl)amino-3-methyl-6-[(1S,2R)-2-(4-bromophenyl)cyclopropyl]pyrimidin-4(3H)-one (28c). 28c (355 mg , $0.681 \mathrm{mmol}, 38 \%$) was obtained as a colorless solid from $27 \mathrm{c}(1.02 \mathrm{~g}$, 1.80 mmol) by the same procedure used to prepare 28 a . $[\alpha]_{\mathrm{D}}{ }^{22}$ $-17.8^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.37(9 \mathrm{H}$, $\mathrm{m}), 1.40(9 \mathrm{H}, \mathrm{m}), 1.44-1.49(1 \mathrm{H}, \mathrm{m}), 1.61-1.65(1 \mathrm{H}, \mathrm{m}), 2.33-2.38$ $(1 \mathrm{H}, \mathrm{m}), 2.56-2.61(1 \mathrm{H}, \mathrm{m}), 3.31(3 \mathrm{H}, \mathrm{s}), 6.09(1 \mathrm{H}, \mathrm{s}), 7.01(2 \mathrm{H}, \mathrm{d}, J$ $=8.4 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 10.80, 25.26, 26.18, 27.75, 27.79 29.97, 84.61, 84.88, 110.81, 120.32, 130.95, 131.07, 135.54, 147.93, 148.17, 148.31, 162.46, 162.59; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BrN}_{3} \mathrm{O}_{5}$: $520.1442\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 520.1450 .

2-Bis(tert-butoxycarbonyl)amino-6-((1S,2R)-2-(3-bromophenyl)-2-(pyridin-2-ylthio) cyclopropyl)-3-methylpyrimidin-4(3H)-one (29). $[\alpha]_{\mathrm{D}}^{22}+22.0^{\circ}\left(c=0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$ $1.39(9 \mathrm{H}, \mathrm{s}), 1.45(9 \mathrm{H}, \mathrm{s}), 1.89-1.93(1 \mathrm{H}, \mathrm{m}), 2.34-2.37(1 \mathrm{H}, \mathrm{m})$, $2.88-2.91(1 \mathrm{H}, \mathrm{m}), 3.43(3 \mathrm{H}, \mathrm{s}), 6.24(1 \mathrm{H}, \mathrm{s}), 6.97(1 \mathrm{H}, \mathrm{t}, J=7.8$
$\mathrm{Hz}), 7.02(1 \mathrm{H}, \mathrm{dd}, J=7.6,4.8 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.18(1 \mathrm{H}$, $\mathrm{d}, J=7.8 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{dt}, J=7.6,0.9 \mathrm{~Hz})$, $7.59(1 \mathrm{H}, \mathrm{s}), 8.50(1 \mathrm{H}, \mathrm{dd}, J=4.8,0.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 21.23,27.81,27.90,30.11,33.37,36.43,84.71,84.85,111.98$, $120.46,121.80,122.60,128.74,129.38,130.34,133.21,136.29,141.04$, $148.24,148.35,148.52,149.79,158.42,160.96,162.47$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{BrN}_{4} \mathrm{O}_{5} \mathrm{SNa}$: $651.1247\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, found 651.1260 .

2-Amino-3-methyl-6-((1S,2R)-2-phenylcyclopropyl)pyrimidin-4(3H)-one (6) from 28a. To a solution of 28a ($31.2 \mathrm{mg}, 0.0707$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ was added trifluoroacetic acid $(0.3 \mathrm{~mL})$, and the mixture was stirred for 30 min at room temperature. The solvent was evaporated, and the residue was partitioned between AcOEt and $5 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ solution. The organic layer was washed with water and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by silica gel chromatography ($\mathrm{AcOEt} / \mathrm{MeOH}=20: 1$) to obtain $6(12.8 \mathrm{mg}, 0.0530 \mathrm{mmol}, 75 \%)$ as a colorless solid. ${ }^{1} \mathrm{H}$ NMR and LCMS data were identical to those obtained by the previous procedure. Optical purity: 94.8% ee (column: Daicel CHIRALPAK AY-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$; eluent: MeCN (0.1% diethylamine), 1.0 $\mathrm{mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, 259 \mathrm{~nm}$; retention time: 4.2 min$)$.

2-Amino-6-((1S,2R)-2-(3-bromophenyl)cyclopropyl)-3-methylpyr-imidin-4(3H)-one (31). To a solution of $\mathbf{2 8 b}(31.2 \mathrm{mg}, 0.0707 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ was added trifluoroacetic acid $(0.3 \mathrm{~mL})$, and the mixture was stirred for 30 min at room temperature. The solvent was evaporated, and the residue was partitioned between AcOEt and 5\% $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution. The organic layer was washed with water and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by silica gel chromatography $(\mathrm{AcOEt} / \mathrm{MeOH}=20: 1)$ to obtain a free form of $31(60.6 \mathrm{mg})$. To a solution of the free form of $31(55.5 \mathrm{mg})$ in dioxane (1.1 mL) was added 4 M hydrogen chloride in dioxane (0.130 mL), and the resulting suspension was stirred for 1 h at room temperature. The precipitate was filtered off and washed with AcOEt to give 31 ($51.4 \mathrm{mg}, 0.144 \mathrm{mmol}, 81 \%$) as a colorless solid. $\mathrm{mp} 218-$ $224{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;[\alpha]_{\mathrm{D}}{ }^{20}-41.3^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $500 \mathrm{MHz}) \delta 1.41-1.48(1 \mathrm{H}, \mathrm{m}), 1.87-1.93(1 \mathrm{H}, \mathrm{m}), 2.28-2.34(1 \mathrm{H}$, m), $2.73-2.78(1 \mathrm{H}, \mathrm{m}), 3.15(3 \mathrm{H}, \mathrm{s}), 5.64(1 \mathrm{H}, \mathrm{s}), 7.15-7.23(2 \mathrm{H}$, $\mathrm{m}), 7.36(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{s}), 8.47(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.28,22.73,26.76,28.76,102.27,123.32$, 128.64, 131.12, 131.24, 133.06, 139.57, 152.99, 154.28, 160.36; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrN}_{3} \mathrm{O}: 320.0393\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 320.0388 .

2-Amino-6-((1S,2R)-2-(3-bromophenyl)cyclopropyl)-3-methylpyr-imidin-4(3H)-one Hydrochloride (ent-31). ent-31 ($26.5 \mathrm{mg}, 0.0743$ $\mathrm{mmol}, 80 \%$) was obtained as a colorless solid from ent-28b (48.3 mg , 0.0928 mmol) by the same procedure used to prepare $31 .[\alpha]_{\mathrm{D}}{ }^{20}$ $+46.0^{\circ} \quad(c=0.30, \mathrm{MeOH})$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrN}_{3} \mathrm{O}$: $320.0393\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 320.0389.

Suzuki-Miyaura Coupling: Typical Procedures. Method A (Conventional Heating): 2-Amino-6-[(1S,2R)-2-(biphenyl-3-yl)-cyclopropyl]-3-methylpyrimidin-4(3H)-one Hydrochloride (32). To a solution of $28 \mathbf{b}(100 \mathrm{mg}, 0.193 \mathrm{mmol})$ in dioxane $(1.1 \mathrm{~mL})$ and water (0.5 mL) was added phenylboronic acid ($35.2 \mathrm{mg}, 0.289 \mathrm{mmol}$), potassium carbonate ($80 \mathrm{mg}, 0.578 \mathrm{mmol}$), and dichlorobis(triphenylphosphine)palladium ($6.8 \mathrm{mg}, 0.00964 \mathrm{mmol}$), and the mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 4.5 h . The reaction mixture was partitioned between AcOEt and water. The organic layer was washed with water and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=50: 1\right)$ to obtain the free form of 32 . This was dissolved in dioxane $(0.7 \mathrm{~mL})$, and 4 M hydrogen chloride in dioxane $(0.089 \mathrm{~mL}, 0.356 \mathrm{mmol})$ was added. The precipitate was filtered and washed with AcOEt to give 32 ($25.7 \mathrm{mg}, 0.0726 \mathrm{mmol}, 61 \%$) as a colorless solid. $\mathrm{mp} 205-208{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{22}-64.0^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right) \delta$ $1.45-1.50(1 \mathrm{H}, \mathrm{m}), 1.94-2.02(1 \mathrm{H}, \mathrm{m}), 2.32-2.37(1 \mathrm{H}, \mathrm{m}), 2.77-$ $2.85(1 \mathrm{H}, \mathrm{m}), 3.13(3 \mathrm{H}, \mathrm{s}), 5.69(1 \mathrm{H}, \mathrm{s}), 7.21(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.32$ $(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.45(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$, $7.50(1 \mathrm{H}, \mathrm{s}), 7.63(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 8.46(1 \mathrm{H}, \mathrm{br} s) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.31,22.89,27.41,28.69,102.15,126.75$, 128.06, 128.47, 128.54, 128.92, 129.85, 129.92, 137.46, 142.10, 142.54, 154.24, 154.37, 160.72; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}: 318.1601$ $\left[(M+H)^{+}\right]$, found 318.1602.

2-Amino-6-((1R,2S)-2-(biphenyl-3-yl)cyclopropyl)-3-methylpyri-midin-4(3H)-one Hydrochloride (ent-32). ent-32 ($33.6 \mathrm{mg}, 0.950$ $\mathrm{mmol}, 76 \%)$ was obtained as a colorless solid from ent-28b (65.3 mg , 0.125 mmol) and phenylboronic acid ($45.9 \mathrm{mg}, 0.376 \mathrm{mmol}$) by the same procedure used to prepare 32 (method $\mathbf{A}) .[\alpha]_{\mathrm{D}}^{22}+67.0^{\circ}(c=$ $0.30, \mathrm{MeOH})$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}: 318.1601[(\mathrm{M}+$ $\mathrm{H})^{+}$], found 318.1601 .

2-Amino-6-((1S,2R)-2-(3'-methoxybiphenyl-3-yl)cyclopropyl)-3-methylpyrimidin-4(3H)-one Hydrochloride (33). 33 (35.3 mg, 0.920 $\mathrm{mmol}, 72 \%)$ was obtained as a colorless solid from $28 \mathrm{~b}(66.5 \mathrm{mg}$, 0.128 mmol) and 3-methoxyphenylboronic acid ($29.1 \mathrm{mg}, 0.192$ mmol) by the same procedure used to prepare 32 (method A). mp $186-189{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-56.0^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $500 \mathrm{MHz}) \delta 1.44-1.51(1 \mathrm{H}, \mathrm{m}), 1.97-2.03(1 \mathrm{H}, \mathrm{m}), 2.32-2.38(1 \mathrm{H}$, m), $2.78-2.85(1 \mathrm{H}, \mathrm{m}), 3.13(3 \mathrm{H}, \mathrm{s}), 3.83(3 \mathrm{H}, \mathrm{s}), 5.71(1 \mathrm{H}, \mathrm{s}), 6.93$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{s}), 7.19(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{d}$, $J=8.0 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.35(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.46$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta$ 10.29, 26.62, 27.42, 28.72, 55.86, 102.30, 113.77, 113.92, 120.49, 126.91, 128.43, 129.04, 129.86, 130.94, 137.31, 142.49, 143.56, 153.26, 154.19, 160.36, 161.63; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}: 348.1707$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 318.1705; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.79 ; \mathrm{H}, 5.85 ; \mathrm{N}, 10.79$. Found: C, 64.80; H, 5.83; N, 10.92 .

2-Amino-6-((1R,2S)-2-(3'-methoxybiphenyl-3-yl)cyclopropyl)-3-methylpyrimidin-4(3H)-one Hydrochloride (ent-33). ent-33 (19.8 $\mathrm{mg}, 0.0516 \mathrm{mmol}, 59 \%$) was obtained as a colorless solid from ent-28b $(45.4 \mathrm{mg}, 0.0872 \mathrm{mmol})$ and 3-methoxyphenylboronic acid (19.9 mg , $0.131 \mathrm{mmol})$ by the same procedure used to prepare $32(\operatorname{method} \mathrm{~A})$. $[\alpha]_{\mathrm{D}}{ }^{22}+52.0^{\circ}(c=0.30, \mathrm{MeOH}) ;$ HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}$: $348.1707\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 348.1707; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.40 ; \mathrm{H}, 5.80 ; \mathrm{N}, 10.90$. Found: C, 65.29; H, 5.85; N, 10.97 .

2-Amino-6-((1S,2R)-2-(biphenyl-4-yl)cyclopropyl)-3-methylpyri-midin-4(3H)-one (34). 34 ($32.8 \mathrm{mg}, 0.103 \mathrm{mmol}, 98 \%$) was obtained as a light brown solid from $28 \mathrm{c}(54.8 \mathrm{mg}, 0.105 \mathrm{mmol})$ and phenylboronic acid $(19.3 \mathrm{mg}, 0.158 \mathrm{mmol})$ by the same procedure used to prepare $32(\operatorname{method} \mathbf{A}) . \operatorname{mp} 179-182^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-66.7^{\circ}(c=$ $\left.0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 1.38-1.43(1 \mathrm{H}, \mathrm{m})$, $1.65-1.70(1 \mathrm{H}, \mathrm{m}), 2.19-2.24(1 \mathrm{H}, \mathrm{m}), 2.56-2.61(1 \mathrm{H}, \mathrm{m}), 3.26$ $(3 \mathrm{H}, \mathrm{s}), 4.69(2 \mathrm{H}, \mathrm{s}), 5.72(1 \mathrm{H}, \mathrm{s}), 7.22(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.29(1 \mathrm{H}$, $\mathrm{t}, J=7.8 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{s}), 7.42(2 \mathrm{H}, \mathrm{d}, J=$ $7.5 \mathrm{~Hz}), 7.55(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 10.82, 25.42, 25.56, 27.47, 101.76, 126.32, 126.82, 127.08, 128.73, 129.58, 136.58, 138.66, 140.77, 153.89, 162.36, 164.22; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{ONa}$: $345.1420\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, found 345.1420 .

2-Amino-3-methyl-6-((1S,2R)-2-(2'-methylbiphenyl-4-yl)-cyclopropyl)pyrimidin-4(3H)-one Hydrochloride (35). 35 (20.2 mg, $0.0549 \mathrm{mmol}, 50 \%$) was obtained as a colorless solid from 28c (57.3 $\mathrm{mg}, 0.110 \mathrm{mmol}$) and 2-methylphenylboronic acid ($22.5 \mathrm{mg}, 0.165$ mmol) by the same procedure used to prepare 36 (method B). mp $165-168{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-50.7^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $600 \mathrm{MHz}) \delta 1.60-1.65(1 \mathrm{H}, \mathrm{m}), 1.78-1.82(1 \mathrm{H}, \mathrm{m}), 2.13(3 \mathrm{H}, \mathrm{s})$, $2.32-2.37(1 \mathrm{H}, \mathrm{m}), 2.88-2.93(1 \mathrm{H}, \mathrm{m}), 3.27(3 \mathrm{H}, \mathrm{s}), 5.58(1 \mathrm{H}, \mathrm{s})$, $7.09-7.24(6 \mathrm{H}, \mathrm{m}), 7.27(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125\right.$ $\mathrm{MHz}) \delta 10.56,20.53,22.47,27.15,28.70,102.08,126.87,128.43$, 129.84, 130.14, 130.47, 131.34, 135.40, 136.25, 142.16, 142.74, 153.81, 154.24, 160.43; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}: 332.1757$ [(M + $\mathrm{H})^{+}$], found 332.1758; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{HCl} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 67.57; H, 6.10; N, 11.26; Cl, 9.50. Found: C, 67.43; H, 6.07; N, 11.41; $\mathrm{Cl}, 9.13$.

Method B (Microwave Heating): 2-Amino-3-methyl-6-((1S,2R)-2-(3'-methylbiphenyl-4-yl)cyclopropyl)pyrimidin-4(3H)-one Hydrochloride (36). To a solution of 28 c ($55.5 \mathrm{mg}, 0.107 \mathrm{mmol}$) in dioxane $(1.1 \mathrm{~mL})$ and water $(0.5 \mathrm{~mL})$ was added 3-methylphenylboronic acid $(21.8 \mathrm{mg}, 0.160 \mathrm{mmol})$, potassium carbonate $(44.2 \mathrm{mg}$, 0.320 mmol), and dichlorobis(triphenylphosphine) palladium (3.7 mg , 0.0053 mmol), and the mixture was heated at $150{ }^{\circ} \mathrm{C}$ under microwave irradiation for 30 min . The reaction mixture was partitioned between AcOEt and water. The organic layer was washed
with water and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by silica gel chromatography $(\mathrm{AcOEt} / \mathrm{MeOH}=10: 1)$ to obtain the free form of 36 . This was dissolved in dioxane $(0.7 \mathrm{~mL})$, and 4 M hydrogen chloride in dioxane $(0.080 \mathrm{~mL}, 0.322 \mathrm{mmol})$ was added. After the evaporation of the solvent, the residue was solidified with AcOEt. The solid was filtered and washed with AcOEt to give 36 $(29.2 \mathrm{mg}, 0.0794 \mathrm{mmol}, 74 \%)$ as a colorless solid. $\mathrm{mp} 173-178{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-68.0^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right) \delta$ $1.58-1.63(1 \mathrm{H}, \mathrm{m}), 1.77-1.81(1 \mathrm{H}, \mathrm{m}), 2.32-2.37(1 \mathrm{H}, \mathrm{m}), 2.37$ $(3 \mathrm{H}, \mathrm{s}), 2.84-2.89(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s}), 5.64(1 \mathrm{H}, \mathrm{s}), 7.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=7.8 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.33(1 \mathrm{H}$, $\mathrm{d}, J=7.8 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{s}), 7.50(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.42,21.58,22.76,27.14,28.72,102.12$, 124.92, 127.82, 128.45, 129.11, 129,80, 130.42, 135.76, 139.61, 141.23, 141.70, 153.71, 154.28, 160.55; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}$: $332.1757\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 332.1759; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{HCl} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.23 ; \mathrm{H}, 6.05 ; \mathrm{N}, 11.37 ; \mathrm{Cl}, 9.59$. Found: C, 68.07; H, 6.00; N, 11.56; Cl, 9.35.

2-Amino-3-methyl-6-((1S,2R)-2-(4'-methylbiphenyl-4-yl)-cyclopropyl)pyrimidin-4(3H)-one Hydrochloride (37). 37 (26.7 mg , $0.0726 \mathrm{mmol}, 67 \%$) was obtained as a colorless solid from 28c (56.5 $\mathrm{mg}, 0.109 \mathrm{mmol}$) and 4-methylphenylboronic acid ($22.1 \mathrm{mg}, 0.163$ mmol) by the same procedure used to prepare 36 (method B). mp $223-228{ }^{\circ} \mathrm{C}$ (dec); $[\alpha]_{\mathrm{D}}{ }^{20}-78.0^{\circ} \quad(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right) \delta 1.58-1.63(1 \mathrm{H}, \mathrm{m}), 1.77-1.81(1 \mathrm{H}, \mathrm{m}), 2.31-$ $2.35(1 \mathrm{H}, \mathrm{m}), 2.35(3 \mathrm{H}, \mathrm{s}), 2.84-2.89(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s}), 5.64$ $(1 \mathrm{H}, \mathrm{s}), 7.21(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.27(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.45(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 7.50(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}: 332.1757\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 332.1759; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 67.90 ; \mathrm{H}, 6.08 ; \mathrm{N}, 11.31 ; \mathrm{Cl}, 9.54$. Found: C, 67.80; H, 6.06; N, 11.41; Cl, 9.38.

2-Amino-3-methyl-6-((1S,2R)-2-(4-(thiophen-2-yl)phenyl)-cyclopropyl)pyrimidin-4(3H)-one Hydrochloride (39). 39 (23.2 mg , $0.0645 \mathrm{mmol}, 65 \%$) was obtained as a colorless solid from 28c (51.6 $\mathrm{mg}, 0.0992 \mathrm{mmol}$) and thiophen-2-ylboronic acid ($19.0 \mathrm{mg}, 0.149$ mmol) by the same procedure used to prepare 36 (method B). mp $203-208{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-74.3^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $500 \mathrm{MHz}) \delta 1.58-1.63(1 \mathrm{H}, \mathrm{m}), 1.76-1.81(1 \mathrm{H}, \mathrm{m}), 2.31-2.36(1 \mathrm{H}$, m), $2.82-2.88(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s}), 5.65(1 \mathrm{H}, \mathrm{s}), 7.06(1 \mathrm{H}, \mathrm{dd}, J=$ $5.1,3.8 \mathrm{~Hz}), 7.23(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.33-7.35(2 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 10.39,22.85,27.07$, 28.75, 102.24, 124.26, 125.91, 126.57, 129.19, 130.51, 134.61, 136.10, 144.90, 153.79, 154.33, 160.60; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OS}$: $324.1165\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 324.1167; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS} \cdot \mathrm{HCl} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 59.19 ; \mathrm{H}, 5.13 ; \mathrm{N}, 11.50$. Found: C, 59.23; H, 5.17; N, 11.75.

2-Amino-3-methyl-6-((1S,2R)-2-(4-(thiophen-3-yl)phenyl)-cyclopropyl)pyrimidin-4(3H)-one Hydrochloride (40). 40 (29.6 mg , $0.0823 \mathrm{mmol}, 89 \%$) was obtained as a colorless solid from 28c (48.1 $\mathrm{mg}, 0.0924 \mathrm{mmol}$) and thiophen-3-ylboronic acid ($17.7 \mathrm{mg}, 0.139$ mmol) by the same procedure used to prepare 36 (method B). mp $214-220{ }^{\circ} \mathrm{C}$ (dec); $[\alpha]_{\mathrm{D}}{ }^{20}-71.7^{\circ} \quad(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 1.57-1.63(1 \mathrm{H}, \mathrm{m}), 1.76-1.81(1 \mathrm{H}, \mathrm{m}), 2.30-$ $2.36(1 \mathrm{H}, \mathrm{m}), 2.82-2.88(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s}), 5.64(1 \mathrm{H}, \mathrm{s}), 7.24$ $(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{dd}, J=5.1,1.3 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{dd}, J=$ $5.1,2.9 \mathrm{~Hz}), 7.56(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{dd}, J=2.9,1.3 \mathrm{~Hz})$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OS}$: $324.1165\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 324.1166.

2-Amino-6-((1S,2R)-2-(4-(furan-2-yl)phenyl)cyclopropyl)-3-meth-ylpyrimidin-4(3H)-one (41). $41(26.0 \mathrm{mg}, 0.0846 \mathrm{mmol}, 90 \%)$ was obtained as a colorless solid from $28 \mathrm{c}(48.7 \mathrm{mg}, 0.0936 \mathrm{mmol})$ and furan-2-ylboronic acid $(15.7 \mathrm{mg}, 0.140 \mathrm{mmol})$ by the same procedure used to prepare 36 (method B). mp $160-162{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-74.0^{\circ}(c=$ $\left.0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.35-1.41(1 \mathrm{H}, \mathrm{m})$, $1.64-1.69(1 \mathrm{H}, \mathrm{m}), 2.17-2.23(1 \mathrm{H}, \mathrm{m}), 2.53-2.59(1 \mathrm{H}, \mathrm{m}), 3.25$ $(3 \mathrm{H}, \mathrm{s}), 4.67(2 \mathrm{H}, \mathrm{br}$ s $), 5.72(1 \mathrm{H}, \mathrm{s}), 6.42-6.45(1 \mathrm{H}, \mathrm{m}), 6.56(1 \mathrm{H}, \mathrm{d}$, $J=3.2 \mathrm{~Hz}), 7.16(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{s}), 7.48(2 \mathrm{H}, \mathrm{d}, J=8.1$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 10.65, 25.40, 25.63, 27.45, $101.87,104.50,111.62,123.15,128.67,129.46,136.67,141.76,153.82$,
154.03, 162.25, 164.01; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}$: $330.1213\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, found 330.1215 .

2-Amino-3-methyl-6-((1S,2R)-2-(4-(5-methylthiophen-2-yl)-phenyl)cyclopropyl)pyrimidin-4(3H)-one (42). 42 ($24.8 \mathrm{mg}, 0.0735$ $\mathrm{mmol}, 82 \%$) was obtained as a colorless solid from $28 \mathrm{c}(46.9 \mathrm{mg}$, 0.0901 mmol) and 5-methylthiophene-2-ylboronic acid (19.2 mg , $0.135 \mathrm{mmol})$ by the same procedure used to prepare $36(\operatorname{method} \mathrm{~B})$. mp 207-210 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-72.3^{\circ}\left(c=0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 1.35-1.40(1 \mathrm{H}, \mathrm{m}), 1.62-1.67(1 \mathrm{H}, \mathrm{m}), 2.16-2.22(1 \mathrm{H}$, m), $2.48(3 \mathrm{H}, \mathrm{s}), 2.51-2.57(1 \mathrm{H}, \mathrm{m}), 3.25(3 \mathrm{H}, \mathrm{s}), 4.68(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.73(1 \mathrm{H}, \mathrm{s}), 6.68(1 \mathrm{H}, \mathrm{dd}, J=3.5,1.0 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz})$, $7.12(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.35(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 10.70,15.44,25.44,25.53,27.45,101.93,122.43,124.68$, 126.13, 129.54, 132.36, 136.36, 139.10, 141.91, 153.82, 162.28, 164.08; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OSNa}: 360.1141\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$], found 360.1141.

2-Amino-3-methyl-6-((1S,2R)-2-(4-(4-methylthiophen-2-yl)-phenyl)cyclopropyl)pyrimidin-4(3H)-one Hydrochloride (43). 43 $(22.3 \mathrm{mg}, 0.0596 \mathrm{mmol}, 66 \%)$ was obtained as a colorless solid from 28c ($46.9 \mathrm{mg}, 0.0901 \mathrm{mmol}$) and 4,4,5,5-tetramethyl-2-(4-methylthiophen-2-yl)-1,3,2-dioxaborolane ($30.3 \mathrm{mg}, 0.135 \mathrm{mmol}$) by the same procedure used to prepare 36 (method B). mp 193-196 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-68.7^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta$ $1.57-1.62(1 \mathrm{H}, \mathrm{m}), 1.75-1.80(1 \mathrm{H}, \mathrm{m}), 2.24(3 \mathrm{H}, \mathrm{s}), 2.30-2.36(1 \mathrm{H}$, m), $2.81-2.86(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s}), 5.64(1 \mathrm{H}, \mathrm{s}), 6.91(1 \mathrm{H}, \mathrm{s}), 7.16$ $(1 \mathrm{H}, \mathrm{s}), 7.21(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.49(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.37,15.80,22.81,27.11,28.75,102.21$, 121.27, 126.33, 126.51, 130.48, 134.79, 135.91, 139.99, 144.59, 153.54, 154.30, 160.54; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OS}$: 338.1322 [(M+ $\mathrm{H})^{+}$], found 338.1324 .

2-Amino-6-((1S,2R)-2-(4-(6-methoxypyridin-2-yl)phenyl)-cyclopropyl)-3-methylpyrimidin-4(3H)-one (44). 44 ($9.2 \mathrm{mg}, 0.026$ $\mathrm{mmol}, 30 \%)$ was obtained as a colorless solid from $28 \mathrm{c}(46.3 \mathrm{mg}$, 0.0890 mmol) and 2-methoxy-6-(4,4,5,5-tetramethyl-1,3,2-dioxabor-olan-2-yl)pyridine ($62.8 \mathrm{mg}, 0.267 \mathrm{mmol}$) by the same procedure used to prepare $36(\operatorname{method} B) . \operatorname{mp} 188-190^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-61.0^{\circ}(c=0.10$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.38-1.44(1 \mathrm{H}, \mathrm{m}), 1.67-$ $1.71(1 \mathrm{H}, \mathrm{m}), 2.20-2.26(1 \mathrm{H}, \mathrm{m}), 2.56-2.62(1 \mathrm{H}, \mathrm{m}), 3.25(3 \mathrm{H}, \mathrm{s})$, $4.01(3 \mathrm{H}, \mathrm{s}), 4.65(2 \mathrm{H}, \mathrm{br}$ s $), 5.75(1 \mathrm{H}, \mathrm{s}), 6.64(1 \mathrm{H}, \mathrm{dd}, J=8.2,0.6$ $\mathrm{Hz}), 7.25(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.29(1 \mathrm{H}, \mathrm{dd}, J=7.4,0.6 \mathrm{~Hz}), 7.59(1 \mathrm{H}$, dd, $J=8.3,7.4 \mathrm{~Hz}), 7.88(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 10.72,25.63,25.70,27.46,53.20,102.04,108.89,112.47$, 125.95, 129.34, 136.65, 138.39, 139.14, 153.79, 154.42, 162.28, 163.69, 163.96; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}$: 371.1479 [($\mathrm{M}+$ $\mathrm{Na})^{+}$], found 371.1482 .

2-Amino-6-((1S,2R)-2-(4-(2-methoxypyridin-4-yl)phenyl)-cyclopropyl)-3-methylpyrimidin-4(3H)-one (45). 45 ($23.5 \mathrm{mg}, 0.0675$ $\mathrm{mmol}, 78 \%$) was obtained as a light brown solid from $28 \mathrm{c}(45.1 \mathrm{mg}$, 0.0867 mmol) and 2-methoxypyridin-4-ylboronic acid ($19.9 \mathrm{mg}, 0.130$ mmol) by the same procedure used to prepare 36 (method \mathbf{B}). mp $224-226^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-57.3^{\circ}\left(c=0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 1.39-1.44(1 \mathrm{H}, \mathrm{m}), 1.67-1.71(1 \mathrm{H}, \mathrm{m}), 2.20-2.26(1 \mathrm{H}, \mathrm{m})$, $2.56-2.62(1 \mathrm{H}, \mathrm{m}), 3.27(3 \mathrm{H}, \mathrm{s}), 3.97(3 \mathrm{H}, \mathrm{s}), 4.64(2 \mathrm{H}, \mathrm{br}$ s), 5.72 $(1 \mathrm{H}, \mathrm{s}), 6.91(1 \mathrm{H}, \mathrm{dd}, J=1.7,0.8 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{dd}, J=5.4,1.7 \mathrm{~Hz})$, $7.25(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.44(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 8.17(1 \mathrm{H}, \mathrm{dd}, J=$ $5.4,0.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 10.74,25.44,25.64$, 27.48, 53.51, 102.02, 108.01, 115.10, 126.17, 129.90, 135.65, 138.65, 147.16, 150.87, 153.73, 162.24, 163.99, 164.92; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2}: 349.1659\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 349.1662.

2-Amino-6-((1S,2R)-2-(4-(6-methoxypyrazin-2-yl)phenyl)-cyclopropyl)-3-methylpyrimidin-4(3H)-one (46). 46 ($20.3 \mathrm{mg}, 0.0581$ $\mathrm{mmol}, 67 \%)$ was obtained as a light yellow powder from $28 \mathrm{c}(45.1 \mathrm{mg}$, 0.0867 mmol) and 2-methoxy-6-(4,4,5,5-tetramethyl-1,3,2-dioxabor-olan-2-yl)pyrazine ($30.7 \mathrm{mg}, 0.130 \mathrm{mmol}$) by the same procedure used to prepare $36(\operatorname{method} \mathrm{~B}) . \operatorname{mp} 192-195^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-64.0^{\circ}(c=0.10$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.40-1.46(1 \mathrm{H}, \mathrm{m}), 1.67-$ $1.73(1 \mathrm{H}, \mathrm{m}), 2.22-2.28(1 \mathrm{H}, \mathrm{m}), 2.57-2.62(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s})$, $4.10(3 \mathrm{H}, \mathrm{s}), 4.73(2 \mathrm{H}, \mathrm{br}$ s), $5.72(1 \mathrm{H}, \mathrm{s}), 7.27(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $7.87(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.11(1 \mathrm{H}, \mathrm{s}), 8.54(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 10.74,25.65,25.72,27.49,53.38,101.96,126.07$,
127.70, 132.80, 133.23, 133.84, 139.42, 148.72, 153.80, 159.77, 162.26, 163.89; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Na}: 372.1431$ [(M + $\mathrm{Na})^{+}$], found 372.1430 .

2-Amino-6-((1S,2R)-2-(3'-methoxybiphenyl-4-yl)cyclopropyl)-3-methylpyrimidin-4(3H)-one Hydrochloride (47). 47 ($21.0 \mathrm{mg}, 0.0547$ $\mathrm{mmol}, 51 \%)$ was obtained as a colorless solid from $28 \mathrm{c}(55.4 \mathrm{mg}$, 0.106 mmol) and 3-methoxyphenylboronic acid ($24.3 \mathrm{mg}, 0.160$ mmol) by the same procedure used to prepare 36 (method \mathbf{B}). mp $151-154{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-67.7^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $500 \mathrm{MHz}) \delta 1.58-1.64(1 \mathrm{H}, \mathrm{m}), 1.77-1.82(1 \mathrm{H}, \mathrm{m}), 2.31-2.37(1 \mathrm{H}$, m), $2.37(3 \mathrm{H}, \mathrm{s}), 2.84-2.90(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 5.65$ $(1 \mathrm{H}, \mathrm{s}), 6.88(1 \mathrm{H}, \mathrm{dd}, J=7.8,2.5 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{dd}, J=2.5,1.7 \mathrm{~Hz})$, $7.08(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{t}, J=$ $7.8 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta$ $10.42,22.75,27.13,28.74,55.76,102.17,113.54,113.76,120.23$, $127.88,130.43,130.93,136.03,140.96,143.18,153.53,154.25,160.50$, 161.62; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}: 348.1707\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 348.1709; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.79$; H, 5.85; N, 10.79; Cl, 9.11. Found: C, 64.70; H, 5.87; N, 10.81; Cl, 9.10 .

2-Amino-6-((1S,2R)-2-(3'-ethoxybiphenyl-4-yl)cyclopropyl)-3-methylpyrimidin-4(3H)-one Hydrochloride (48). 48 ($22.5 \mathrm{mg}, 0.0565$ $\mathrm{mmol}, 63 \%$) was obtained as a colorless solid from 28 c (46.6 mg , 0.0895 mmol) and 3-ethoxyphenylboronic acid ($22.3 \mathrm{mg}, 0.134$ mmol) by the same procedure used to prepare 36 (method B). mp $153-155^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-63.7^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $500 \mathrm{MHz}) \delta 1.39(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.58-1.64(1 \mathrm{H}, \mathrm{m}), 1.77-1.82$ $(1 \mathrm{H}, \mathrm{m}), 2.31-2.37(1 \mathrm{H}, \mathrm{m}), 2.84-2.90(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s}), 4.07$ $(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 5.65(1 \mathrm{H}, \mathrm{s}), 6.87(1 \mathrm{H}$, ddd, $J=8.1,2.0,0.8 \mathrm{~Hz})$, $7.07(1 \mathrm{H}, \mathrm{dd}, J=2.0,1.4 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{ddd}, J=8.1,1.4,0.8 \mathrm{~Hz}), 7.28$ $(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.42,15.23,22.74,27.12,28.74$, $64.55,102.19,114.13,114.36,120.15,127.87,130.41,130.91,135.99$, 141.01, 143.15, 153.48, 154.25, 160.48, 160.90; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}: 362.1863\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 364.1863. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.23 ; \mathrm{H}, 6.17 ; \mathrm{N}, 10.37 ; \mathrm{Cl}, 8.75$. Found: C, 65.31; H, 6.22; N, 10.60; Cl, 8.50.

2-Amino-3-methyl-6-((1S,2R)-2-(3'-propoxybiphenyl-4-yl)-cyclopropyl)pyrimidin-4(3H)-one Hydrochloride (49). 49 (15.7 mg , $0.0381 \mathrm{mmol}, 38 \%$) was obtained as a colorless solid from 28c (51.7 $\mathrm{mg}, 0.0993 \mathrm{mmol}$) and 3-propoxyphenylboronic acid ($26.8 \mathrm{mg}, 0.149$ $\mathrm{mmol})$ by the same procedure used to prepare 36 (method $\mathbf{B}) . \mathrm{mp}$ $161-164{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-74.0^{\circ}(c=0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $500 \mathrm{MHz}) \delta 1.05(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.60-1.64(1 \mathrm{H}, \mathrm{m}), 1.76-1.84$ $(3 \mathrm{H}, \mathrm{m}), 2.31-2.37(1 \mathrm{H}, \mathrm{m}), 2.84-2.90(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s}), 3.95$ $(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 5.65(1 \mathrm{H}, \mathrm{s}), 6.87(1 \mathrm{H}$, ddd, $J=8.0,2.6,1.0 \mathrm{~Hz})$, $7.07(1 \mathrm{H}, \mathrm{dd}, J=2.6,1.6 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{ddd}, J=8.0,1.6,1.0 \mathrm{~Hz}), 7.28$ $(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.42,10.91,22.72,23.75,27.12$, 28.75, 70.63, 102.19, 114.13, 114.38, 120.13, 127.87, 130.42, 130.91, 135.98, 141.03, 143.15, 153.46, 154.23, 160.49, 161.09; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}: 376.2020\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 376.2020.

2-Amino-6-((1S,2R)-2-(3'-isopropoxybiphenyl-4-yl)cyclopropyl)-3-methylpyrimidin-4(3H)-one Hydrochloride (50). 50 (26.4 mg , $0.0641 \mathrm{mmol}, 75 \%$) was obtained as a colorless solid from 28c (44.6 $\mathrm{mg}, 0.0857 \mathrm{mmol}$) and 3-isopropoxyphenylboronic acid (23.1 mg , 0.129 mmol) by the same procedure used to prepare 36 (method \mathbf{B}). $\mathrm{mp} 168-171{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-60.0^{\circ} \quad(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 1.32(6 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 1.58-1.64(1 \mathrm{H}, \mathrm{m})$, $1.77-1.82(1 \mathrm{H}, \mathrm{m}), 2.31-2.37(1 \mathrm{H}, \mathrm{m}), 2.84-2.90(1 \mathrm{H}, \mathrm{m}), 3.26$ $(3 \mathrm{H}, \mathrm{s}), 4.64(1 \mathrm{H}$, septet, $J=6.1 \mathrm{~Hz}), 5.65(1 \mathrm{H}, \mathrm{s}), 6.86(1 \mathrm{H}$, ddd, $J=$ $7.9,2.5,0.8 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{dd}, J=2.5,1.7 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{ddd}, J=7.9$, $1.7,0.8 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.29(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.50$ $(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.42,22.41$, 22.73, 27.12, 28.74, 71.05, 102.19, 115.67, 115.77, 120.18, 127.85, 130.42, 130.94, 135.97, 141.01, 143.22, 153.45, 154.25, 159.75, 160.48; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}: 376.2020\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 376.2023; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.91 ; \mathrm{H}$, 6.44; N, 10.03; Cl 8.46. Found: C, 66.02; H, 6.39; N, 10.19; Cl 8.42.

2-Amino-6-((1S,2R)-2-(3'-(cyclopropylmethoxy)biphenyl-4-yl)-cyclopropyl)-3-methylpyrimidin-4(3H)-one Hydrochloride (51). 51 $(16.8 \mathrm{mg}, 0.0396 \mathrm{mmol}, 46 \%)$ was obtained as a colorless solid from 28c ($44.6 \mathrm{mg}, 0.0857 \mathrm{mmol}$) and 3-cyclopropylmethoxyphenylboronic acid $(24.7 \mathrm{mg}, 0.129 \mathrm{mmol})$ by the same procedure used to prepare 36 $(\operatorname{method} B) . \operatorname{mp~} 152-155^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-55.3^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 0.33-0.37(2 \mathrm{H}, \mathrm{m}), 0.59-0.64(2 \mathrm{H}, \mathrm{m})$, $1.21-1.30(1 \mathrm{H}, \mathrm{m}), 1.60-1.64(1 \mathrm{H}, \mathrm{m}), 1.77-1.82(1 \mathrm{H}, \mathrm{m}), 2.31-$ $2.37(1 \mathrm{H}, \mathrm{m}), 2.84-2.90(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s}), 5.65(1 \mathrm{H}, \mathrm{s}), 6.86$ $(1 \mathrm{H}, \mathrm{ddd}, J=8.0,2.4,1.0 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{dd}, J=2.4,1.7 \mathrm{~Hz}), 7.12$ $(1 \mathrm{H}, \mathrm{ddd}, J=8.0,1.7,1.0 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.29(1 \mathrm{H}, \mathrm{t}, J$ $=8.0 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta$ 3.56, 10.43, 11.28, 22.77, 27.12, 28.73, 73.84, 102.19, 114.26, 114.50, 120.20, 127.87, 130.41, 130.91, 136.00, 141.00, 143.16, 153.60, 154.27, 160.51, 161.00; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}: 388.2020[(\mathrm{M}+$ $\mathrm{H})^{+}$], found 388.2021 .

2-Amino-6-((1S,2R)-2-(3'-ethylbiphenyl-4-yl)cyclopropyl)-3-meth-ylpyrimidin-4(3H)-one Hydrochloride (52). 52 ($24.2 \mathrm{mg}, 0.0634$ mmol, 73%) was obtained as a colorless solid from $28 \mathrm{c}(45.0 \mathrm{mg}$, 0.0865 mmol) and 3-ethylphenylboronic acid ($19.5 \mathrm{mg}, 0.130 \mathrm{mmol}$) by the same procedure used to prepare 36 (method B). mp 175-178 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-62.7^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$ $\delta 1.25(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.61-1.66(1 \mathrm{H}, \mathrm{m}), 1.77-1.82(1 \mathrm{H}, \mathrm{m})$, $2.32-2.37(1 \mathrm{H}, \mathrm{m}), 2.68(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}), 2.85-2.91(1 \mathrm{H}, \mathrm{m}), 3.26$ $(3 \mathrm{H}, \mathrm{s}), 5.65(1 \mathrm{H}, \mathrm{s}), 7.16(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.2$ $\mathrm{Hz}), 7.30(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{s})$, $7.51(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.42$, 16.32, 22.70, 27.15, 28.73, 29.97, 102.18, 125.21, 127.35, 127.86, 127.98, 129.91, 130.41, 135.71, 141.35, 141.77, 146.15, 153.46, 154.25, 160.47; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}: 346.1914\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 346.1914 .

2-Amino-3-methyl-6-((1S,2R)-2-(3'-propylbiphenyl-4-yl)-cyclopropyl)pyrimidin-4(3H)-one Hydrochloride (53). 53 (26.5 mg, $0.0669 \mathrm{mmol}, 76 \%$) was obtained as a colorless solid from 28c (45.7 $\mathrm{mg}, 0.0878 \mathrm{mmol}$) and 4,4,5,5-tetramethyl-2-(3-propylphenyl)-1,3,2dioxaborolane ($32.4 \mathrm{mg}, 0.132 \mathrm{mmol}$) by the same procedure used to prepare 36 (method B). mp $177-182{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-66.3^{\circ}(c=0.30$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 0.95(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz})$, $1.59-1.64(1 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}$, sextet, $J=7.6 \mathrm{~Hz}), 1.77-1.82(1 \mathrm{H}, \mathrm{m})$, $2.32-2.37(1 \mathrm{H}, \mathrm{m}), 2.63(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.85-2.91(1 \mathrm{H}, \mathrm{m}), 3.26$ $(3 \mathrm{H}, \mathrm{s}), 5.65(1 \mathrm{H}, \mathrm{s}), 7.14(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.2$ $\mathrm{Hz}), 7.30(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{s})$, $7.51(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.43$, 14.13, 22.70, 25.86, 27.14, 28.73, 39.14, 102.20, 125.25, 127.86, 127.97, 128.63, 129.81, 130.41, 141.34, 141.68, 144.46, 153.42, 154.25, 160.46; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}: 360.2070\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 360.2073; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{HCl} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 68.83; H, 6.68; N, 10.47; Cl 8.83. Found: C, 68.91; H, 6.58; N, 10.76; Cl 8.62.

2-Amino-3-methyl-6-((1S,2R)-2-(3'-(methylthio)biphenyl-4-yl)-cyclopropyl)pyrimidin-4(3H)-one Hydrochloride (54). 54 (20.5 mg , $0.0513 \mathrm{mmol}, 57 \%$) was obtained as a colorless solid from 28c (46.6 $\mathrm{mg}, 0.0895 \mathrm{mmol}$) and 3-(methylthio) phenylboronic acid $(22.6 \mathrm{mg}$, $0.134 \mathrm{mmol})$ by the same procedure used to prepare $36(\operatorname{method} \mathbf{B})$. mp $154-159{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-67.7^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 1.59-1.64(1 \mathrm{H}, \mathrm{m}), 1.77-1.82(1 \mathrm{H}, \mathrm{m}), 2.32-$ $2.38(1 \mathrm{H}, \mathrm{m}), 2.50(3 \mathrm{H}, \mathrm{s}), 2.84-2.90(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s}), 5.65$ $(1 \mathrm{H}, \mathrm{s}), 7.22(1 \mathrm{H}$, ddd, $J=6.0,2.6,2.0 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $7.32-7.34(2 \mathrm{H}, \mathrm{m}), 7.42(1 \mathrm{H}, \mathrm{dd}, J=2.6,1.3 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.1$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.43,15.74,22.80,27.12$, 28.75, 102.13, 124.60, 125.78, 126.41, 127.87, 130.40, 130.52, 136.23, 140.58, 140.80, 142.41, 153.66, 154.27, 160.56; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{OS}: 364.1478\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 364.1480.

2-Amino-6-((1S,2R)-2-(3'-(ethylthio)biphenyl-4-yl)cyclopropyl)-3-methylpyrimidin-4(3H)-one Hydrochloride (55). 55 (28.3 mg, 0.0684 $\mathrm{mmol}, 76 \%)$ was obtained as a colorless solid from $28 \mathrm{c}(47.0 \mathrm{mg}$, 0.0903 mmol) and 3-(ethylthio) phenylboronic acid ($24.7 \mathrm{mg}, 0.135$ mmol) by the same procedure used to prepare 36 (method B). mp $141-144{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-62.7^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $500 \mathrm{MHz}) \delta 1.30(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.59-1.65(1 \mathrm{H}, \mathrm{m}), 1.77-1.82$

Scheme 5. Synthesis of Reference Compounds with Ethylene Linker (4, 5, 38, and 61) ${ }^{a}$

${ }^{a}$ (a) 2.5 equiv of $\mathrm{Boc}_{2} \mathrm{O}, 0.3$ equiv of DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 72% (63), 92% (64); (b) R-B(OH) $)_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, dioxane, $\mathrm{H}_{2} \mathrm{O}, 100{ }^{\circ} \mathrm{C}$ (Method A), $150{ }^{\circ} \mathrm{C}$ under microwave, 30 min (Method B).
$(1 \mathrm{H}, \mathrm{m}), 2.32-2.38(1 \mathrm{H}, \mathrm{m}), 2.85-2.91(1 \mathrm{H}, \mathrm{m}), 2.98(2 \mathrm{H}, \mathrm{q}, J=7.3$ $\mathrm{Hz}), 3.26(3 \mathrm{H}, \mathrm{s}), 5.65(1 \mathrm{H}, \mathrm{s}), 7.28(1 \mathrm{H}, \mathrm{dt}, J=7.6,1.7 \mathrm{~Hz}), 7.30$ $(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{dt}, J=7.6,1.7$ $\mathrm{Hz}), 7.49(1 \mathrm{H}, \mathrm{t}, J=1.7 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.45,14.81,22.76,27.11,28.27,28.75,102.20$, 125.38, 127.88, 128.21, 128.81, 130.44, 130.52, 136.24, 138.85, 140.53, 142.48, 153.43, 154.26, 160.48; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{OS}$: $378.1635\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 378.1638; Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OS} \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.28 ; \mathrm{H}, 5.89 ; \mathrm{N}, 10.06 ; \mathrm{S}, 7.68 ; \mathrm{Cl}$, 8.49. Found: C, 63.49; H, 5.89; N, 10.12; S, 7.39; Cl, 8.37.

2-Amino-6-((1S,2R)-2-(3'-(methoxymethyl)biphenyl-4-yl)-cyclopropyl)-3-methylpyrimidin-4(3H)-one Hydrochloride (56). 56 $(27.1 \mathrm{mg}, 0.0681 \mathrm{mmol}, 77 \%)$ was obtained as a colorless solid from 28c ($46.2 \mathrm{mg}, 0.0888 \mathrm{mmol}$) and 3-(methoxymethyl)phenylboronic acid $(22.1 \mathrm{mg}, 0.133 \mathrm{mmol})$ by the same procedure used to prepare 36 (method B). mp $183-185^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-65.0^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 1.59-1.65(1 \mathrm{H}, \mathrm{m}), 1.78-1.83(1 \mathrm{H}, \mathrm{m})$, $2.32-2.38(1 \mathrm{H}, \mathrm{m}), 2.85-2.91(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s}), 3.40(3 \mathrm{H}, \mathrm{s})$, $4.50(2 \mathrm{H}, \mathrm{s}), 5.65(1 \mathrm{H}, \mathrm{s}), 7.28-7.31(3 \mathrm{H}, \mathrm{m}), 7.39(1 \mathrm{H}, \mathrm{t}, J=7.8$ $\mathrm{Hz}), 7.50(1 \mathrm{H}$, ddd, $J=7.8,1.7,1.3 \mathrm{~Hz}), 7.52-7.55(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.42,22.71,27.13,28.73,58.43,75.62$, 102.19, 127.19, 127.25, 127.87, 127.94, 129.99, 130.49, 135.99, 140.17, 140.90, 141.88, 153.40, 154.24, 160.44; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}: 362.1863\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 362.1866.
2-(4'-((1R,2S)-2-(2-Amino-1-methyl-6-oxo-1,6-dihydropyrimidin-4-yl)cyclopropyl)biphenyl-3-yl)acetonitrile Hydrochloride (57). 57 $(25.7 \mathrm{mg}, 0.0654 \mathrm{mmol}, 73 \%)$ was obtained as a colorless solid from 28c $(46.7 \mathrm{mg}, 0.0897 \mathrm{mmol})$ and 2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetonitrile ($32.7 \mathrm{mg}, 0.135 \mathrm{mmol}$) by the same procedure used to prepare 36 (method B). mp 184-186 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-59.7^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta$ $1.59-1.65(1 \mathrm{H}, \mathrm{m}), 1.78-1.83(1 \mathrm{H}, \mathrm{m}), 2.33-2.39(1 \mathrm{H}, \mathrm{m}), 2.85-$ $2.91(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s}), 3.95(2 \mathrm{H}, \mathrm{s}), 5.65(1 \mathrm{H}, \mathrm{s}), 7.30-7.35(3 \mathrm{H}$, $\mathrm{m}), 7.44(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.53-7.58(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $125 \mathrm{MHz}) \delta 10.44,22.74,23.56,27.10,28.74,102.21,127.33,127.51$, 127.91, 128.07, 130.57, 130.69, 133.08, 136.38, 140.34, 142.66, 153.42, 154.27, 160.47; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}: 357.1710$ [(M+ $\mathrm{H})^{+}$], found 357.1713.

2-Amino-6-((1S,2R)-2-(3'-(2-hydroxyethyl)biphenyl-4-yl)-cyclopropyl)-3-methylpyrimidin-4(3H)-one Hydrochloride (58). 58 $(30.7 \mathrm{mg}, 0.0771 \mathrm{mmol}, 77 \%)$ was obtained as a colorless solid from 28c $(52.4 \mathrm{mg}, 0.101 \mathrm{mmol})$ and 3-(2-hydroxyethyl)phenylboronic acid $(25.1 \mathrm{mg}, 0.151 \mathrm{mmol})$ by the same procedure used to prepare 36 (method B). mp $166-168{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-65.7^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 1.59-1.64(1 \mathrm{H}, \mathrm{m}), 1.77-1.82(1 \mathrm{H}, \mathrm{m})$, $2.32-2.37(1 \mathrm{H}, \mathrm{m}), 2.84-2.91(1 \mathrm{H}, \mathrm{m}), 2.86(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.26$ $(3 \mathrm{H}, \mathrm{s}), 3.78(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 5.65(1 \mathrm{H}, \mathrm{s}), 7.19(1 \mathrm{H}, \mathrm{d}, J=7.6$ $\mathrm{Hz}), 7.29(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{d}, J=$ $7.6 \mathrm{~Hz}), 7.43(1 \mathrm{H}, \mathrm{s}), 7.52(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $125 \mathrm{MHz}) \delta 10.42,22.74,27.14,28.72,40.29,64.21,102.17,125.71$, 127.87, 128.57, 129.13, 129.92, 130.43, 135.80, 141.11, 141.20, 141.79, 153.53, 154.26, 160.48; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}$: $384.1681\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, found 384.1683; Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.94 ; \mathrm{H}, 6.19 ; \mathrm{N}, 10.33 ; \mathrm{Cl} 8.71$. Found: C, 64.98; H, 6.09; N, 10.43; Cl 8.48.

N-(4'-((1R,2S)-2-(2-Amino-1-methyl-6-oxo-1,6-dihydropyrimidin-$4-y l()$ cyclopropyl)biphenyl-3-yl)acetamide Hydrochloride (59). 59
($33.1 \mathrm{mg}, 0.0806 \mathrm{mmol}, 76 \%$) was obtained as a light brown solid from $28 \mathrm{c}(55.2 \mathrm{mg}, 0.106 \mathrm{mmol})$ and 3-acetoamidophenylboronic acid $(28.5 \mathrm{mg}, 0.159 \mathrm{mmol})$ by the same procedure used to prepare 36 (method B). mp $163-166^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-58.0^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 1.59-1.65(1 \mathrm{H}, \mathrm{m}), 1.78-1.83(1 \mathrm{H}, \mathrm{m})$, $2.14(3 \mathrm{H}, \mathrm{s}), 2.33-2.38(1 \mathrm{H}, \mathrm{m}), 2.85-2.91(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s})$, $5.66(1 \mathrm{H}, \mathrm{s}), 7.30(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.35$ $(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.52(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $7.87(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.38,22.64,23.93$, 27.11, 28.78, 102.27, 119.55, 120.10, 123.56, 130.34, 130.46, 136.07, $140.45,140.80,142.38,153.02,154.16,160.32,171.86$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}: 375.1816\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 375.1816 .
4^{\prime}-((1R,2S)-2-(2-Amino-1-methyl-6-oxo-1,6-dihydropyrimidin-4-yl)cyclopropyl)biphenyl-3-carboxamide Hydrochloride (60). 60 $(29.0 \mathrm{mg}, 0.0731 \mathrm{mmol}, 68 \%)$ was obtained as a colorless solid from 28 c ($55.8 \mathrm{mg}, 0.107 \mathrm{mmol}$) and 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide ($39.7 \mathrm{mg}, 0.161 \mathrm{mmol}$) by the same procedure used to prepare $36(\operatorname{method} \mathrm{~B}) . \operatorname{mp} 165-169{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}$ $-61.7^{\circ}(c=0.30, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 1.60-$ $1.66(1 \mathrm{H}, \mathrm{m}), 1.79-1.84(1 \mathrm{H}, \mathrm{m}), 2.34-2.40(1 \mathrm{H}, \mathrm{m}), 2.87-2.93$ $(1 \mathrm{H}, \mathrm{m}), 3.26(3 \mathrm{H}, \mathrm{s}), 5.66(1 \mathrm{H}, \mathrm{s}), 7.33(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.51$ $(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.60(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{ddd}, J=7.8$, $1.7,1.1 \mathrm{~Hz}), 7.82(1 \mathrm{H}$, ddd, $J=7.8,1.7,1.1 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{t}, J=1.7$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 10.42,22.65,27.11,28.77$, $102.25,127.13,127.54,127.96,130.20,130.61,131.21,135.55,136.44$, 140.12, 142.10, 153.01, 154.17, 160.32, 172.31; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}$: $383.1479\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, found 383.1481 .

Synthesis of Reference Compounds (Scheme 5). Starting materials 2, 30, and $\mathbf{6 2}$ were prepared according to the literature or patent. ${ }^{6 \mathrm{~b}, \mathrm{c}}$

2-Amino-6-(2-(biphenyl-3-yl)ethyl)-3-methylpyrimidin-4(3H)-one (4). ${ }^{6 b, c} 4(33.9 \mathrm{mg}, 0.111 \mathrm{mmol}$, quant) was obtained as a colorless solid from $63(53.6 \mathrm{mg}, 0.105 \mathrm{mmol})$ and phenylboronic acid (19.3 $\mathrm{mg}, 0.158 \mathrm{mmol}$) by the same procedure used to prepare 32 (method A). Spectrum data were found to be identical to those in the literature.

2-Amino-6-(2-(3'-methoxybiphenyl-3-yl)ethyl)-3-methylpyrimi-din-4(3H)-one (5). ${ }^{6 b, c} 5(36.9 \mathrm{mg}, 0.110 \mathrm{mmol}, 100 \%)$ was obtained as a colorless solid from $63(56.0 \mathrm{mg}, 0.110 \mathrm{mmol})$ and 3methoxyphenylboronic acid ($25.1 \mathrm{mg}, 0.165 \mathrm{mmol}$) by the same procedure used to prepare $32(\operatorname{method} A)$. Spectrum data were found to be identical to those in the literature.

2-Amino-6-(2-(biphenyl-4-yl)ethyl)-3-methylpyrimidin-4(3H)-one (38). ${ }^{6 c} 38(19.2 \mathrm{mg}, 0.0629 \mathrm{mmol}, 56 \%)$ was obtained as colorless solid from $64(57.0 \mathrm{mg}, 0.112 \mathrm{mmol})$ and phenylboronic acid (20.5 $\mathrm{mg}, 0.168 \mathrm{mmol}$) by the same procedure used to prepare 36 (method B). mp $213-216{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.70(2 \mathrm{H}, \mathrm{dd}, J=$ $9.2,7.0 \mathrm{~Hz}), 2.97(2 \mathrm{H}, \mathrm{dd}, J=9.2,7.0 \mathrm{~Hz}), 3.41(3 \mathrm{H}, \mathrm{s}), 5.05(2 \mathrm{H}, \mathrm{br}$ s), $5.84(1 \mathrm{H}, \mathrm{s}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.30-7.34(1 \mathrm{H}, \mathrm{m}), 7.40-$ $7.44(2 \mathrm{H}, \mathrm{m}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.55-7.59(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 27.59, 33.72, 38.93, 101.87, 126.99, 127.10, 127.17, 128.35, 128.74, 128.78, 139.97, 140.22, 140.95, 154.81, 162.68, 166.55; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}: 306.1601\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 306.1606 .

2-Amino-6-(2-(3'-(ethylthio)biphenyl-4-yl)ethyl)-3-methylpyrimi-din-4(3H)-one (61). $61(32.4 \mathrm{mg}, 0.0886 \mathrm{mmol}, 95 \%)$ was obtained as colorless solid from $64(47.7 \mathrm{mg}, 0.0938 \mathrm{mmol})$ and 3-(methylthio)phenylboronic acid $(25.6 \mathrm{mg}, 0.141 \mathrm{mmol})$ by the same procedure
used to prepare $36(\operatorname{method} \operatorname{B}) . \mathrm{mp} 130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 1.34(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 2.68-2.72(2 \mathrm{H}, \mathrm{m}), 2.95-3.00$ $(2 \mathrm{H}, \mathrm{m}), 2.99(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 3.41(3 \mathrm{H}, \mathrm{s}), 5.11(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.83$ $(1 \mathrm{H}, \mathrm{s}), 7.27(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{dt}, J=7.5,1.7 \mathrm{~Hz}), 7.34$ $(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{dt}, J=7.5,1.7 \mathrm{~Hz}), 7.49(2 \mathrm{H}, \mathrm{d}, J=8.3$ $\mathrm{Hz}), 7.50(1 \mathrm{H}, \mathrm{t}, J=1.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.42$, 27.61, 27.69, 33.68, 38.80, 101.76, 124.57, 127.17, 127.53, 127.58, 128.81, 129.17, 137.14, 138.55, 140.47, 141.63, 154.88, 162.68, 166.37; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{OS}: 366.1635\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 366.1640; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OS} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.34 ; \mathrm{H}, 6.39$; N , 11.38; S, 8.69. Found: C, 68.59; H, 6.21; N, 11.61; S, 8.31.

2-Bis(tert-butoxycarbonyl)amino-6-(3-bromophenethyl)-3-meth-ylpyrimidin-4(3H)-one (63). $63(275 \mathrm{mg}, 0.541 \mathrm{mmol}, 72 \%)$ was obtained as a colorless solid from $30(233 \mathrm{mg}, 0.756 \mathrm{mmol})$ by the same procedure used to prepare 25a. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$ $1.46(9 \mathrm{H}, \mathrm{s}), 2.80(2 \mathrm{H}, \mathrm{dd}, J=9.0,6.6 \mathrm{~Hz}), 2.93(2 \mathrm{H}, \mathrm{dd}, J=9.0,6.6$ $\mathrm{Hz}), 3.42(3 \mathrm{H}, \mathrm{s}), 6.21(1 \mathrm{H}, \mathrm{s}), 7.10(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{t}, J$ $=7.6 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.35(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 27.90,30.08,33.48,38.17,84.96,111.40,122.57,127.00$, 129.44, 130.05, 131.42, 142.80, 148.46, 149.02, 162.85, 164.58; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BrN}_{3} \mathrm{O}_{5}$: $508.1442\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 508.1443.

2-Bis(tert-butoxycarbonyl)amino-6-(4-bromophenethyl)-3-meth-ylpyrimidin-4(3H)-one (64). $64(261 \mathrm{mg}, 0.514 \mathrm{mmol}, 92 \%)$ was obtained as a colorless solid from $62(172 \mathrm{mg}, 0.558 \mathrm{mmol})$ by the same procedure used to prepare $25 \mathrm{a} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $1.47(9 \mathrm{H}, \mathrm{s}), 2.79(2 \mathrm{H}, \mathrm{dd}, J=8.6,7.4 \mathrm{~Hz}), 2.92(2 \mathrm{H}, \mathrm{dd}, J=8.6,7.4$ $\mathrm{Hz}), 3.42(3 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{s}), 7.05(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.38(2 \mathrm{H}, \mathrm{d}, J$ $=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 27.89,30.77,33.26,38.26$, 84.95, 111.46, 120.06, 130.14, 131.56, 139.40, 148.48, 148.98, 162.83, 164.63; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BrN}_{3} \mathrm{O}_{5}$: $508.1442\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, found 508.1453.

Protein Expression and Purification. A cDNA fragment encoding human BACE1 (hBACE1) residues 43-454 was cloned into pET28a and expressed in E. coli BL21(DE3) cells. The hBACE1 protein was expressed as insoluble inclusion bodies and was refolded by a modified method using iFOLD protein Refolding System 3 (Novagen). The refolded protein was applied on a Q-Sepharose FF column. The fractions with BACE catalytic activity were collected and applied to a His Trap HP column followed by a HiLoad Q Sepharose HP column and Superdex 200 column for further purification. After thrombin digestion, a HisTrap Benzamine FF column was used for removal of thrombin. The flow through fraction was loaded onto a His trap column, and the purified hBACE 1 protein was $>98 \%$ purity on SDS-PAGE. The buffer was exchanged into 20 mM Tris- HCl (pH 8.0), $150 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM}$ DTT.

ELISA (High-Sensitive Enzyme Assay). In vitro high-sensitive BACE1 activity assays were performed using substrate peptides from the American Peptide Company, Inc. (Sunnyvale, CA) and human BACE1 prepared as above. The substrate peptide sequence was SEVNLDAEFRHDSGYEK-biotin. Peptides and inhibitors were dissolved in dimethyl sulfoxide (DMSO), and dissolved peptides were stored at $-20^{\circ} \mathrm{C}$. The substrate peptide was captured on a streptavidin 96-well-format plate (Nunc) at $25 \mathrm{nM}(100 \mu \mathrm{~L}$ scale reaction). The reaction buffer was 50 mM sodium acetate, pH 4.5 , containing $0.25 \mathrm{mg} / \mathrm{mL}$ bovine serum albumin (BSA). The reactions were started by adding $70 \mu \mathrm{~L}$ of reaction buffer, $10 \mu \mathrm{~L}$ of inhibitor solution or DMSO, and $20 \mu \mathrm{~L}$ of BACE1 (final 0.45 nM) in each well. After 3 h of incubation at $25^{\circ} \mathrm{C}$, reaction mixtures except cleaved and uncleaved substrates were washed out with TBST (Tris-buffered saline containing 0.1% of Tween-20). The cleaved product on plates was detected with horseradish peroxidase (HRP)-conjugated 82E1, which is a monoclonal antibody specific for the N -terminal end generated by BACE1 cleavage (82E1; IBL Co., Ltd., Gunma, Japan), like the general ELISA assay. The quantifications of HRP activity were carried out by a colorimetric method using TMB substrate (Thermo Scientific, Inc.).

Homogeneous Time-Resolved Fluorescence (HTRF) Assay. $0.5 \mu \mathrm{~L}$ of the test compounds (dissolved in dimethyl sulfoxide) was incubated with $48.5 \mu \mathrm{~L}$ of the fluorescence-quenching peptide substrate solution (Biotin-XSEVNLDAEFRHDSGC-Eu: $\mathrm{X}=\varepsilon$ -
amino- n-capronic acid, $\mathrm{Eu}=$ europium cryptate) and $1 \mu \mathrm{~L}$ of recombinant human BACE1 protein (R \& D systems) for 3 h at 30 ${ }^{\circ} \mathrm{C}$ in the 96 well half area plate (black color plate, Costar). The substrate peptide was synthesized by reacting with Biotin-XSEVNLDAEFREDSGC (Peptide Institute) and cryptate TBPCOOH mono SMP (CIS bio international). The final concentrations of the substrate peptide and recombinant human BACE1 protein were 18 nM and 7.4 nM , respectively. The enzymatic reaction was performed in sodium acetate buffer (50 mM sodium acetate (pH 5.0), 0.008% Triton X100). After the reaction, a $50 \mu \mathrm{~L}$ of $8.0 \mu \mathrm{~g} / \mathrm{mL}$ Streptavidin-XL665 (CIS bio international) dissolved in phosphate buffer (160 mM $\mathrm{K}_{2} \mathrm{HPO}_{4}-\mathrm{H}_{2} \mathrm{PO}_{4}(\mathrm{pH} 7.0), 0.008 \%$ TritonX-100, 0.8 M KF) was added to each well and incubated for 1 h at $30{ }^{\circ} \mathrm{C}$. Then, the fluorescence intensity (excitation wavelength 320 nm , emission wavelength 620 and 665 nm) in each well was measured using a Wallac 1420 multilabel counter (Perkin-Elmer life sciences). The enzymatic activity was calculated by each fluorescence intensity ratio ([ratio of fluorescence at 665 nm to that at 620 nm$] \times 10,000$).

Crystallography. Crystallization of apo human BACE1 was performed by the sitting-drop vapor diffusion method at $20^{\circ} \mathrm{C} . \sim 3$ $\mathrm{mg} / \mathrm{mL}$ of human BACE1 prepared as above was mixed with an equal volume of mother liquor containing 120 mM sodium citrate pH 6.5 , 200 mM ammonium iodide, and $28-30 \% \mathrm{w} / \mathrm{v}$ polyethylene glycol 5000 monomethyl ether (PEG 5000 MME). In order to prepare 6bound crystals, apo crystals were soaked in a 50 mM solution of 6, $10 \% ~(\mathrm{v} / \mathrm{v}$) dimethyl sulfoxide (DMSO), 90 mM sodium citrate pH $6.6,180 \mathrm{mM}$ ammonium iodide, and 25.2% (w/v) PEG 5000 MME for 20 min . For 33, apo crystals were soaked in $10 \mathrm{mM} \mathrm{33}, 10 \% ~(\mathrm{v} / \mathrm{v})$ DMSO, 90 mM sodium citrate $\mathrm{pH} 6.6,180 \mathrm{mM}$ ammonium iodide, and $25.2 \%(\mathrm{w} / \mathrm{v})$ PEG 5000 MME for 20 min . For 36, apo crystals were soaked in $10 \mathrm{mM} \mathrm{36}, 10 \% ~(\mathrm{v} / \mathrm{v})$ DMSO, 90 mM sodium citrate pH 5.0 , and $25.2 \%(\mathrm{w} / \mathrm{v})$ PEG 5000 MME for 15 min . Inhibitor soaked crystals were transferred into cryoprotectant (0.1 M sodium citrate $\mathrm{pH} 6.6,0.2 \mathrm{M}$ ammonium iodide, $28 \% \mathrm{w} / \mathrm{v}$ PEG 5000 MME , $20 \% \mathrm{v} / \mathrm{v}$ glycerol or 0.1 M sodium citrate $\mathrm{pH} 5.0,28 \% \mathrm{w} / \mathrm{v}$ PEG5000 MME, $20 \% \mathrm{v} / \mathrm{v}$ glycerol) for a few seconds and were flash-frozen prior to data collection.

Diffraction data were collected at 100 K using a MicroMax-007 HF X-ray generator (Rigaku). Data reduction was performed with HKL2000, ${ }^{28}$ iMosflm, ${ }^{29}$ and SCALA. ${ }^{30}$ Structures were solved by molecular replacement using apo BACE1 structure (PDB ID: 1W50) as a search model. Model rebuilding and structure refinement were performed with COOT ${ }^{31}$ and Refmac5, ${ }^{30}$ respectively. The structure factors and coordinates of 6,33 , and 36 are available in accession numbers 3VV6, 3VV7, and 3VV8, respectively.

Molecular Modeling. Figure 1: Conformations of compounds 6, ent-6, 7, and ent-7 were energy-minimized on Molecular Operating Environment (MOE), 2011.10, ${ }^{15}$ with default settings using the MMFF94x force field ${ }^{16}$ and three minimization algorithms (steepest descent method, conjugate gradient method, truncated Newton method) until the root-mean-square gradient falls less than 0.05 . The resulting structures were superimposed with that of 3 in PDB code 2VA5 on an aminopyrimidone ring.

Figure 5: The crystal structure of a complex between BACE1 and 6 (PDB code: 3VV6) was used for a molecular modeling with MOE. A molecular structure of compound 32 was constructed by editing the molecule of 6 extracted from the complex. Energy-minimization of 32 was performed under the constraint of fixing the positions of atoms in aminopyrimidone, the cyclopropane ring, and the middle benzene ring with default settings as was done in Figure 1. Then, the ligand 6 complexed with the BACE1 protein was replaced with the energyminimized structure of 32 .

All calculations were performed on Panasonic CF-V8.

- ASSOCIATED CONTENT

(s) Supporting Information

LCMS (ESI-LRMS) data and plausible reaction mechanism for the production of ent-28 and 29. This material is available free of charge via the Internet at http://pubs.acs.org.

Accession Codes

3VV6, 3VV7, 3VV8.

AUTHOR INFORMATION

Corresponding Author

*S.Y.: E-mail address: shuji.yonezawa@shionogi.co.jp. Telephone number: +81-11-700-4702. Fax: +81-11-700-4714. S.S.: E-mail address: shu@pharm.hokudai.ac.jp. Telephone \& fax number: +81-11-706-3769.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Mr. Rikio Ikenishi (Shionogi Techno Advance Research Co., Ltd.) for elemental analysis, Ms. Izumi Fujisaka (Shionogi Techno Advance Research Co., Ltd.) for measuring the optical rotation, Ms. Naomi Umesako (Shionogi \& Co., Ltd.), and the members of the Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University for the high-resolution mass spectroscopy analysis. This investigation was supported by a Grant-in-Aid for Scientific Research (21390028) from the Japan Society for the Promotion of Science.

ABBREVIATIONS USED

AVN, 2,2'-azobisvaleronitrile; BSA, N,O-bistrimethylsilylacetamide; Bpin, 4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl; CDI, carbonyl diimidazole; HRP, horseradish peroxidase; HTRF, homogeneous time-resolved fluorescence; LRMS, low-resolution mass spectrometry; MMFF94x, Merck molecular force field 94x; MME, monomethyl ether; MOE, Molecular Operating Environment; MS4A, molecular sieves 4A; TBDPS, tert-butyldiphenylsilyl; TBST, tris-buffered saline containing 0.1% of Tween-20; TPAP, tetrapropylammonium perruthenate; $\operatorname{sAPP} \beta$, soluble amyloid precursor protein β

REFERENCES

(1) (a) Hardy, J.; Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353-356. (b) Gandy, S. The role of cerebral amyloid β accumulation in common forms of Alzheimer disease. J. Clin. Invest. 2005, 115, 1121-1129. (c) Querfurth, H. W.; LaFeral, F. M. Mechanisms of disease: Alzheimer's disease. N. Engl. J. Med. 2010, 362, 329-344. (d) Alzheimer's Association. Alzheimer's Disease Facts and Figures. Alzheimer's \& Dementia; 2011; Vol. 7, Issue 2.
(2) (a) Kandalepas, P. C.; Vassar, R. Identification and biology of β secretase. J. Neurochem. 2012, 120 (Suppl. 1), 55-61. (b) Yan, R.; Bienkowski, M. J.; Shuck, M. E.; Miao, H.; Tory, M. C.; Pauley, A. M.; Brashler, J. R.; Stratman, N. C.; Mathews, W. R.; Buhl, A. E.; Carter, D. B.; Tomasselli, A. G.; Parodi, L. A.; Heinrikson, R. L.; Gurney, M. E. Membrane-anchored aspartyl protease with Alzheimer's disease β secretase activity. Nature 1999, 402, 533-537. (c) Sinha, S.; Anderson, J. P.; Barbour, R.; Basi, G. S.; Caccavello, R.; Davis, D.; Doan, M.; Dovey, H. F.; Frigon, N.; Hong, J.; Jacobson-Croak, K.; Jewett, N.; Keim, P.; Knops, J.; Lieberburg, I.; Power, M.; Tan, H.; Tatsuno, G.; Tung, J.; Schenk, D.; Seubert, P.; Suomensaari, S. M.; Wang, S.; Walker, D.; Zhao, J.; McConlogue, L.; John, V. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 1999, 402, 537-540. (d) Vassar, R.; Bennett, B. D.; BabuKhan, S.; Kahn, S.; Mendiaz, E. A.; Denis, P.; Teplow, D. B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.; Fisher, S.; Fuller, J.; Edenson, S.; Lile, J.; Jarosinski, M. A.; Biere, A. L.; Curran, E.; Burgess, T.; Louis, J.C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. β-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999, 286, 735-741. (e) Lin, X.;

Koelsch, G.; Wu, S.; Downs, D.; Dashti, A.; Tang, J. Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 1456-1460.
(3) (a) Luo, Y.; Bolon, B.; Kahn, S.; Bennett, B. D.; Babu-Khan, S.; Denis, P.; Fan, W.; Kha, H.; Zhang, J.; Gong, Y.; Martin, L.; Louis, J.C.; Yan, Q.; Richards, W. G.; Citron, M.; Vassar, R. Mice deficient in BACE1, the Alzheimer's β-secretase, have normal phenotype and abolished β-amyloid generation. Nature Neurosci. 2001, 4, 231-232. (b) Cai, H.; Wang, Y.; McCarthy, D.; Wen, H.; Borchelt, D. R.; Price, D. L.; Wong, P. C. BACE1 is the major β-secretase for generation of A β peptides by neurons. Nature Neurosci. 2001, 4, 233-234.
(4) For recent reviews, see: (a) Albert, J. S. Progress in the development of β-secretase Inhibitors for Alzheimer's disease. Prog. Med. Chem. 2009, 48, 133-161. (b) Hamada, Y.; Kiso, Y. Recent progress in the drug discovery of non-peptidic BACE1 inhibitors. Expert Opin. Drug. Discovery 2009, 4, 391-416. (c) Iserloh, U.; Cumming, J. N. Peptidomimetic BACE1 inhibitors for treatment of Alzheimer's disease: design and evolution. Methods Princ. Med. Chem. 2010, 45 (AsparticAcid Proteases as Therapeutic Targets), 441-479. (d) Cole, D. C.; Bursavich, M. G. Nonpeptide BACE1 inhibitors: design and synthesis. Methods Princ. Med. Chem. 2010, 45 (Aspartic Acid Proteases as Therapeutic Targets), 481-509. (e) Ghosh, A. K.; Brindisi, M.; Tang, J. Developing β-secretase inhibitors for treatment of Alzheimer's disease. J. Neurochem. 2012, 120 (Suppl. 1), 71-83.
(5) (a) May, P. C.; Dean, R. A.; Lowe, S. L.; Martenyi, F.; Sheehan, S. M.; Boggs, L. N.; Monk, S. A.; Mathes, B. M.; Mergott, D. J.; Watson, B. M.; Stout, S. L.; Timm, D. E.; LaBell, E. S.; Gonzales, C. R.; Nakano, M.; Jhee, S. S.; Yen, M.; Ereshefsky, L.; Lindstrom, T. D.; Calligaro, D. O.; Cocke, P. J.; Hall, D. G.; Friedrich, S.; Citron, M.; Audia, J. E. Robust central reduction of amyloid- β in humans with an orally available, non-peptidic β-secretase inhibitor. J. Neurosci. 2011, 31, 16507-16516. (b) Shitaka, Y.; Mitani, Y.; Nagakura, A.; Miyake, A.; Matsuoka, N. Progress in the development of anti-amyloid drugs for treatment of Alzheimer's disease. Nippon Yakurigaku Zasshi 2010, 136, 15-20. (c) Frisardi, V.; Solfrizzi, V.; Imbimbo, B. P.; Capurso, C.; D’Introno, A.; Colacicco, A. M.; Vendemiale, G.; Seripa, D.; Pilotto, A.; Capurso, A.; Panza, F. Towards disease-modifying treatment of Alzheimer's disease: drugs targeting β-amyloid. Curr. Alzheimer Res. 2010, 7, 40-55.
(6) (a) Geschwindner, S.; Olsson, L.-L.; Albert, J. S.; Deinum, J.; Edwards, P. D.; de Beer, T.; Folmer, R. H. A. Discovery of a novel warhead against β-secretase through fragment-based lead generation. J. Med. Chem. 2007, 50, 5903-5911. (b) Edwards, P. D.; Albert, J. S.; Sylvester, M.; Aharony, D.; Andisik, D.; Callaghan, O.; Campbell, J. B.; Carr, R. A.; Chessari, G.; Congreve, M.; Frederickson, M.; Folmer, R. H. A.; Geschwindner, S.; Koether, G.; Kolmodin, K.; Krumrine, J.; Mauger, R. C.; Murray, C. W.; Olsson, L.-L.; Patel, S.; Spear, N.; Tian, G. Application of fragment-based lead generation to the discovery of novel, cyclic amidine β-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. J. Med. Chem. 2007, 50, 5912-5925. (c) Albert, J. S.; Andisik, D.; Arnold, J.; Brown, D.; Callaghan, O.; Campbell, J.; Carr, R. A.; Chessari, G.; Congreve, M. S.; Edwards, P.; Empfield, J. R.; Frederickson, M.; Koether, G. M.; Krumrine, J.; Mauger, R.; Murray, C. W.; Patel, S.; Sylvester, M.; Throner, S. Preparation of substituted 2-aminopyrimidin-4-ones for treating or preventing $\mathrm{A} \beta$-related pathologies. Patent WO2006041404, WO2006041405, 2006.
(7) For recent successful exmples, see: (a) Cheng, Y.; Judd, T. C.; Bartberger, M. D.; Brown, J.; Chen, K.; Fremeau, R. T.; Hickman, D.; Hitchcock, S. A.; Jordan, B.; Li, V.; Lopez, P.; Louie, S. W.; Luo, Y.; Michelsen, K.; Nixey, T.; Powers, T. S.; Rattan, C.; Sickmier, E. A., St.; Jean, D. J.; Wahl, R. C.; Wen, P. H.; Wood, S. From fragment screening to in vivo efficacy: Optimization of a series of 2 aminoquinolines as potent inhibitors of β-site amyloid precursor protein cleaving enzyme 1 (BACE1). J. Med. Chem. 2011, 50, 58365857. (b) Zhu, Z.; Sun, Z.-Y.; Ye, Y.; Voigt, J.; Strickland, C.; Smith, E. M.; Cumming, J.; Wang, L.; Wong, J.; Wang, Y.-S.; Wyss, D. F.; Chen, X.; Kuvelkar, R.; Kennedy, M. E.; Favreau, L.; Parker, E.; McKittrick, B. A.; Stamford, A.; Czarniecki, M.; Greenlee, W.; Hunter, J. C.

Discovery of cyclic acylguanidines as highly potent and selective β-site amyloid cleaving enzyme (BACE) inhibitors: Part I-Inhibitor design and validation. J. Med. Chem. 2010, 49, 951-965. (c) Wang, Y.-S.; Strickland, C.; Voigt, J. H.; Kennedy, M. E.; Beyer, B. M.; Senior, M. M.; Smith, E. M.; Nechuta, T. L.; Madison, V. S.; Czarniecki, M.; McKittrick, B. A.; Stamford, A. W.; Parker, E. M.; Hunter, J. C.; Greenlee, W. J.; Wyss, D. F. Application of fragment-based NMR screening, X-ray crystallography, structure-based design, and focused chemical library design to identify novel $\mu \mathrm{M}$ leads for the development of nM BACE-1 (β-site APP cleaving enzyme 1) inhibitors. J. Med. Chem. 2010, 49, 942-950. (d) Madden, J.; Dod, J. R.; Godemann, R.; Kraemer, J.; Smith, M.; Biniszkiewicz, M.; Hallett, D. J.; Barker, J.; Dyekjaer, J. D.; Hesterkamp, T. Fragment-based discovery and optimization of BACE1 inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 5329-5333. (e) Godemann, R.; Madden, J.; Kraemer, J.; Smith, M.; Fritz, U.; Hesterkamp, T.; Barker, J.; Hoeppner, S.; Hallett, D.; Cesura, A.; Ebneth, A.; Kemp, J. Fragment-based discovery of BACE1 inhibitors using functional assays. Biochemistry 2009, 48, 1074310751. (f) Congreve, M.; Aharony, D.; Albert, J. S.; Callaghan, O.; Campbell, J.; Carr, R. A. E.; Chessari, G.; Cowan, S.; Edwards, P. D.; Frederickson, M.; McMenamin, R.; Murray, C. W.; Patel, S.; Wallis, N. Application of fragment screening by X-ray crystallography to the discovery of aminopyridines as inhibitors of β-secretase. J. Med. Chem. 2007, 50, 1124-1132. (g) Murray, C. W.; Callaghan, O.; Chessari, G.; Cleasby, A.; Congreve, M.; Frederickson, M.; Hartshorn, M. J.; McMenamin, R.; Patel, S.; Wallis, N. Application of fragment screening by X-ray crystallography to β-secretase. J. Med. Chem. 2007, 50, 1116-1123.
(8) (a) Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A. J. Recent developments in fragment-based drug discovery. J. Med. Chem. 2008, 51, 3661-3680. (b) Orita, M.; Ohno, K.; Warizaya, M.; Amano, Y.; Niimi, T. Lead generation and examples: opinion regarding how to follow up hits. Methods Enzymol. 2011, 493, 383-419.
(9) Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem. 2009, 52, 6752-6756.
(10) Clemons, P. A.; Bodycombe, N. E.; Carrinski, H. A.; Wilson, J. A.; Shamji, A. F.; Wagner, B. K.; Koehler, A. N.; Schreiber, S. L. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 18787-18792.
(11) Some trial has been demonstrated to evaluate the effect of conformation restriction by isothermal titration calorimetry. See: (a) DeLorbe, J. E.; Clements, J. H.; Teresk, M. G.; Benfield, A. P.; Plake, H. R.; Millspaugh, L. E.; Martin, S. F. Thermodynamic and structural effects of conformational constraints in protein-ligand interactions: Entropic paradoxy associated with ligand preorganization. J. Am. Chem. Soc. 2009, 131, 16758-16770. (b) Benfield, A. P.; Teresk, M. G.; Plake, H. R.; DeLorbe, J. E.; Millspaugh, L. E.; Martin, S. F. Ligand preorganization may be accompanied by entropic penalties in protein-ligand interactions. Angew. Chem., Int. Ed. 2006, 45, 6830-6835. (c) Davidson, J. P.; Lubman, O.; Rose, T.; Waksman, G.; Martin, S. F. Calorimetric and structural studies of 1,2,3trisubstituted cyclopropanes as conformationally constrained peptide inhibitors of Src SH2 domain binding. J. Am. Chem. Soc. 2002, 124, 205-215.
(12) (a) Gagnon, A.; Duplessis, M.; Fader, L. Arylcyclopropanes: properties, synthesis and use in medicinal chemistry. Org. Prep. Proc. Int. 2010, 42, 1-69. (b) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Stereoselective cyclopropanation reactions. Chem. Rev. 2003, 103, 977-1050.
(13) (a) Shuto, S.; Ono, S.; Hase, Y.; Kamiyama, N.; Takada, H.; Yamasihita, K.; Matsuda, A. Conformational restriction by repulsion between adjacent substituents on a cyclopropane ring: design and enantioselective synthesis of 1-phenyl-2-(1-aminoalkyl)-N,N-diethylcyclopropanecarboxamides as potent NMDA receptor antagonists. J. Org. Chem. 1996, 61, 915-923. (b) Shuto, S.; Ono, S.; Hase, Y.; Ueno, Y.; Noguchi, T.; Yoshii, K.; Matsuda, A. Synthesis and biological activity of conformationally restricted analogs of milnacipran: $(1 S, 2 R)$ -

1-phenyl-2-[(S)-1-aminopropyl]-N,N-diethylcyclopropanecarboxamide, an efficient noncompetitive N-methyl-D-aspartic acid receptor antagonist. J. Med. Chem. 1996, 52, 6752-6756. (c) Ono, S.; Ogawa, K.; Yamashita, K.; Yamamoto, T.; Kazuta, Y.; Matsuda, A.; Shuto, S. Conformational analysis of the NMDA receptor antagonist $(1 S, 2 R)$-1-phenyl-2-[(S)-1-aminopropyl]-N,N-diethylcyclopropanecarboxamide (PPDC) designed by a novel conformational restriction method based on the structural feature of cyclopropane ring. Chem. Pharm. Bull. 2002, 50, 966-968 and references therein..
(14) (a) Kazuta, Y.; Matsuda, A.; Shuto, S. Development of versatile cis- and trans-dicarbon-substituted chiral cyclopropane units: Synthesis of ($1 S, 2 R$)- and ($1 R, 2 R$)-2-aminomethyl-1-(1H-imidazol-4-yl)cyclopropanes and their enantiomers as conformationally restricted analogues of histamine. J. Org. Chem. 2002, 67, 1669-1677. (b) Kazuta, Y.; Hirano, K.; Natsume, K.; Yamada, S.; Kimura, R.; Matsumoto, S.; Furuichi, K.; Matsuda, A.; Shuto, S. Cyclopropanebased conformational restriction of histamine. (1S,2S)-2-(2-amino-ethyl)-1-(1 H -imidazol-4-yl)cyclopropane, a highly selective agonist for the histamine H_{3} receptor, having a cis-cyclopropane structure. J. Med. Chem. 2003, 46, 1980-1988. (c) Watanabe, M.; Kazuta, Y.; Hayashi, H.; Yamada, S.; Matsuda, A.; Shuto, S. Stereochemical diversityoriented conformational restriction strategy. Development of potent histamine H_{3} and/or H_{4} receptor antagonists with an imidazolylcyclopropane structure. J. Med. Chem. 2006, 49, 5787-5796. (d) Watanabe, M.; Hirokawa, T.; Kobayashi, T.; Yoshida, A.; Ito, Y.; Yamada, S.; Orimoto, N.; Yamasaki, Y.; Arisawa, M.; Shuto, S. Investigation of the bioactive conformation of histamine H_{3} receptor antagonists by the cyclopropylic strain-based conformational restriction strategy. J. Med. Chem. 2011, 53, 3585-3593.
(15) Merck molecular force field $94 x$ (MMFF94x force field) is the variant of MMFF94, which improved the treatment of planar nitrogen. Parrill, A. L.; Wanjala, I. W.; Pham, T. C. T.; Baker, D. L. Computational identification and experimental characterization of substrate binding determinants of nucleotide pyrophosphatase/ phosphodiesterase 7. BMC Biochem. 2011, 12, 65. MMFF94 is reported to have an advantage over other force fields with regard to the minimization of small molecules or protein/ligand complexes. For example, see: (a) MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular interaction energies and geometries. J. Comput. Chem., 1999, 20, 730-748. (b) Ercanli, T; Boyd, D. B. Evaluation of computational chemistry methods: Crystallographic and cheminformatics analysis of aminothiazole methoximes. J. Chem. Inf. Model. 2005, 45, 591-601. For details of original MMFF94, see: Halgren, T. A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490-519.
(16) Molecular Operating Environment (MOE), 2011.10; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite \#910, Montreal, QC, Canada, H3A 2R7, 2011. URL: http://www. chesemcomp.com/.
(17) Yamaguchi, K.; Kazuta, Y.; Abe, H.; Matsuda, A.; Shuto, S. Construction of a cis-cyclopropane via reductive radical decarboxylation. Enantioselective synthesis of cis- and trans-1-arylpiperazyl-2phenylcyclopropanes designed as antidopaminergic agents. J. Org. Chem. 2003, 68, 9255-9262.
(18) (a) Brooks, D. W.; Lu, L. D. L.; Masamune, S. Carbon acylation under practically neutral conditions. Angew. Chem., Int. Ed. Engl. 1979, 18, 72-74. (b) Clay, R. J.; Collom, T. A.; Karrick, G. L.; Wemple, J. A safe, economical method for the preparation of β-oxo esters. Synthesis 1993, 290-292.
(19) Compound $17 / e n t-17$ was synthesized according to the following literature: Zhang, X.; Hodgetts, K.; Rachwal, S.; Zhao, H.; Wasley, J. W. F.; Craven, K.; Brodbeck, R.; Kieltyka, A.; Hoffman, D.; Bacolod, M. D.; Girard, B.; Tran, J.; Thurkauf, A. trans-1-[(2-Phenylcyclopropyl)methyl]-4-arylpiperazines: mixed dopamine D_{2} / D_{4} receptor antagonists as potential antipsychotic agents. J. Med. Chem. 2000, 43, 3923-3932.
(20) For other examples of stereoselective Barton decarboxylation, see: (a) Diedrichs, N.; Westermann, B. Synthesis of enantiomerically pure bicyclic lactams. Synlett 1999, 1127-1129. (b) Oba, M.; Nishiyama, N.; Nishiyama, K. Novel stereocontrolled approach to conformationally constrained analogues of l-glutamic acid and Lproline via stereoselective cyclopropanation of 3,4-didehydro-Lpyroglutamic ABO ester. Tetrahedron 2005, 61, 8456-8464.
(21) For a plausible mechanism for the production of compound 29, see Figure S1 in: Barton, D. H. R.; Crich, D.; Motherwell, W. B. The invention of new radical chain reactions. Part VIII. Radical chemistry of thiohydroxamic esters; A new method for the generation of carbon radicals from carboxylic acids. Tetrahedron 1985, 41, 3901-3924.
(22) The flip of the Tyr71 side chain in BACE1 is well observed in the structures complexed with 5 -membered aminohydantoin-type inhibitors which possess a large substituent for the S2 pocket. For recent examples, see: (a) Cumming, J. N.; Smith, E. M.; Wang, L.; Misiaszek, J.; Durkin, J.; Pan, J.; Iserloh, U.; Wu, Y.; Zhu, Z.; Strickland, C.; Voigt, J.; Chen, X.; Kennedy, M. E.; Kuvelkar, R.; Hyde, L. A.; Cox, K.; Favreau, L.; Czarniecki, M. F.; Greenlee, W. J.; McKittrick, B. A.; Parker, E. M.; Stamford, A. W. Structure based design of iminohydantoin BACE1 inhibitors: Identification of an orally available, centrally active BACE1 inhibitor. Bioorg. Med. Chem. Lett. 2012, 22, 2442-2449. (b) Swahn, B.-M.; Holenz, J.; Kihlstroem, J.; Kolmodin, K.; Lindstroem, J.; Plobeck, N.; Rotticci, D.; Sehgelmeble, F.; Sundstroem, M.; Berg, S. v.; Faelting, J.; Georgievska, B.; Gustavsson, S.; Neelissen, J.; Ek, M.; Olsson, L.-L.; Berg, S. Aminoimidazoles as BACE-1 inhibitors: The challenge to achieve in vivo brain efficacy. Bioorg. Med. Chem. Lett. 2012, 22, 1854-1859. (c) Zhou, P.; Li, Y.; Fan, Y.; Wang, Z.; Chopra, R.; Olland, A.; Hu, Y.; Magolda, R. L.; Pangalos, M.; Reinhart, P. H.; Turner, M. J.; Bard, J.; Malamas, M. S.; Robichaud, A. J. Pyridinyl aminohydantoins as small molecule BACE1 inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 23262329. (d) Nowak, P.; Cole, D. C.; Aulabaugh, A.; Bard, J.; Chopra, R.; Cowling, R.; Fan, K. Y.; Hu, B.; Jacobsen, S.; Jani, M.; Jin, G.; Lo, M.C.; Malamas, M. S.; Manas, E. S.; Narasimhan, R.; Reinhart, P.; Robichaud, A. J.; Stock, J. R.; Subrath, J.; Svenson, K.; Turner, J.; Wagner, E.; Zhou, P.; Ellingboe, J. W. Discovery and initial optimization of $5,5^{\prime}$-disubstituted aminohydantoins as potent β secretase (BACE1) inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 632-635. (e) Malamas, M. S.; Robichaud, A.; Erdei, J.; Quagliato, D.; Solvibile, W.; Zhou, P.; Morris, K.; Turner, J.; Wagner, E.; Fan, K.; Olland, A.; Jacobsen, S.; Reinhart, P.; Riddell, D.; Pangalos, M. Design and synthesis of aminohydantoins as potent and selective human β secretase (BACE1) inhibitors with enhanced brain permeability. Bioorg. Med. Chem. Lett. 2010, 20, 6597-6605. (f) Malamas, M. S.; Erdei, J.; Gunawan, I.; Turner, J.; Hu, Y.; Wagner, E.; Fan, K.; Chopra, R.; Olland, A.; Bard, J.; Jacobsen, S.; Magolda, R. L.; Pangalos, M.; Robichaud, A. J. Design and synthesis of $5,5^{\prime}$-disubstituted aminohydantoins as potent and selective human β-secretase (BACE1) inhibitors. J. Med. Chem. 2010, 53, 1146-1158. (g) Malamas, M. S.; Erdei, J.; Gunawan, I.; Barnes, K.; Johnson, M.; Hui, Y.; Turner, J.; Hu, Y.; Wagner, E.; Fan, K.; Olland, A.; Bard, J.; Robichaud, A. J. Aminoimidazoles as potent and selective human β-secretase (BACE1) inhibitors. J. Med. Chem. 2009, 52, 6314-6323. (h) Stachel, S. J.; Coburn, C. A.; Rush, D.; Jones, K. L. G.; Zhu, H.; Rajapakse, H.; Graham, S. L.; Simon, A.; Holloway, M. K.; Allison, T. J.; Munshi, S. K.; Espeseth, A. S.; Zuck, P.; Colussi, D.; Wolfe, A.; Pietrak, B. L.; Lai, M.-T.; Vacca, J. P. Discovery of aminoheterocycles as a novel β secretase inhibitor class: pH dependence on binding activity part 1 . Bioorg. Med. Chem. Lett. 2009, 19, 2977-2980.
(23) (a) Takahashi, O.; Kohno, Y.; Iwasaki, S.; Saito, K.; Iwaoka, M.; Tomoda, S.; Umezawa, Y.; Tsuboyama, S.; Nishio, M. Hydrogen-bond-like nature of the CH / π interaction as evidenced by crystallographic database analyses and ab initio molecular orbital calculations. Bull. Chem. Soc. Jpn. 2001, 74, 2421-2430. (b) Nishio, M. CH/ π hydrogen bonds in crystals. CrystEngComm 2004, 6, 130-158. (c) Takahashi, O.; Kohno, Y.; Nishio, M. Relevance of weak hydrogen bonds in the conformation of organic compounds and bioconjugates:
evidence from recent experimental data and high-level ab initio MO calculations. Chem. Rev. 2010, 110, 6049-6076.
(24) Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. The magnitude of the CH / π interaction between benzene and some model hydrocarbons. J. Am. Chem. Soc. 2000, 122, 3746-3753.
(25) Ran, J.; Wong, M. W. Saturated hydrocarbon-benzene complexes: theoretical study of cooperative CH / π interactions. J. Phys. Chem. A 2006, 110, 9702-9709.
(26) X-ray structure analysis of the compound 5-BACE1 complex showed that 5 occupies a position almost the same as that of 3 in the binding site (PDB 2VA5), in which the OMe group of 5 does not form a hydrogen bond network with BACE1 (data not shown).
(27) Rotation of the side chain of Leu30 was observed in the complex of BACE1 and its peptidemimetic inhibitor OM00-3: Hong, L.; Turner, R. T., III; Koelsch, G.; Shin, D.; Ghosh, A. K.; Tang, J. Crystal structure of memapsin 2 (β-secretase) in complex with an inhibitor OM00-3. Biochemistry 2001, 41, 10963-10967.
(28) Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 307-326.
(29) Leslie, A. G. W.; Powell, H. R. Evolving Methods Macromol. Crystallogr. 2007, 245, 41-51, ISBN 978-1-4020-6314-5.
(30) Bailey, S. The CCP4 Suite: Programs for protein crystallography. Acta Crystallogr. 1994, D50, 760-763.
(31) Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. 2010, D66, 486-501.

[^0]: Received: August 3, 2012
 Published: September 21, 2012

[^1]: $a_{2,2^{\prime}}$-Azobisvaleronitrile. ${ }^{b}$ Not detected.

